网络推广数学建模论文.doc

上传人:龙*** 文档编号:146770 上传时间:2018-07-11 格式:DOC 页数:15 大小:484.50KB
下载 相关 举报
网络推广数学建模论文.doc_第1页
第1页 / 共15页
网络推广数学建模论文.doc_第2页
第2页 / 共15页
网络推广数学建模论文.doc_第3页
第3页 / 共15页
网络推广数学建模论文.doc_第4页
第4页 / 共15页
网络推广数学建模论文.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、 1 1、 问题的重述 1.1 问题的背景 自从 1984年美国洛杉矶奥运会 开始 ,奥运会 就 开始 攫取着巨大的商业价值,它与电视结盟,在运动员入场仪式、颁奖仪式、热门赛事、金牌榜发布等受关注的时刻发布赞助商广告,它在每个行业中仅挑选一家奥运全球合作伙伴 ,也就 成为了商业社会里企业最重要的展示舞台。 不过高昂的 赞助费用尤其是宣传费用将绝大多数企业排除在了奥运会之外。 但是 他们不甘心错过奥运会这个吸引大众眼球的巨大宣传机会,试图寻找新的新闻传播渠道。 随着 科学技术的发展 ,数字化 不仅仅打碎了时间也 将一切碎片化, 利用社交网络可以获得更加 丰富的比赛信息和网友的评论。这也为更多的企

2、业提供了在奥运期间宣传自己的机会 。 1.2 需要解决的问题 一家企业想利用社交网络在奥运会期间进行企业宣传。假设现在奥运会开幕还有100 天,一个社交网络的专业推广者平均每天可以新增 500 个粉丝,普通网络用户平均每天可以新增 20 个粉丝,些粉丝会把推广者发布的和奥运会相关的所有信息都分享给自己的粉丝们。 专业推广者是一种稀缺资源,假设能够找到的专业推广者仅有 10人,他们是否愿意为公司工作,取决于公司开出的薪水。由于工资是按日结算,们随时可能转投工资更高的其他公司。兼职推广 者可以大量雇到,但他们必须由专业推广者培训后才能上岗工作,一个专业推广者一天最多培训 20 人,培训将占用专业推

3、广者的工作时间。甲公司现有网络推广资金 20 万元,想利用网络推广扩大产品的知名度。该公司的一个竞争对手乙公司也同样计划利用奥运期间进行商品的网络推广,他们同样预算了 20 万元的推广资金,乙公司目前产品的市场占有率是甲公司的 1.5 倍。 问题一: 建立合理的数学模型,帮助甲公司制定一份奥运期间的网络推广的资金使用和用人方案,使得产品推广的效果达到最大。 问题二: 某黑客公司研制了一个能够自动添加粉丝的软 件,售价 10000 元,该软件一天可以自动发出 100000 个粉丝添加邀请,待添加的目标用户都是从社交网络中按照广度优先的原则搜索到的, 但是其中仅有一些粉丝数较少或者经常无目的添加关

4、注的网友愿意接受邀请。请建立数学模型说明这个软件的出现对上一问的用人和资金使用方案是否有影响?如果有影 响,该如何对方案进行调整? 2、 问题的分析 2.1 问题的难点 与分析 2.1.1 问题一的难点 与分析 : 难点: 在计算这个问题时,网络推广的粉丝之间存在重复, 粉丝属于普通用户,不会大量发展新的粉丝,所以普通网络用户存在一个粉 丝基数, 那么就承接了第一阶段的问题,需要先计算出粉丝的重复度, 以及普通用户的粉丝基数。再将这些数据带进此问的计算会大大减少误差。 在确定了重复度 和粉丝基数后 , 本阶段任务中还 需要考虑的难点如下: 1、如何安排专业推广员和兼职推广员的数量才能让 受众

5、数达到最大。 2 2、如何安排专业推广员和兼职推广员的数量才能让推广资金运用的最少。 3、在 受众数 最大与运用推广资金最少这两个矛盾 面前 用什么样的标准来 权衡 他 们。 4、怎样处理乙公司目前产品的市场占有率是甲公司的 1.5 倍这个条件。 分析: 对 提出的难点 1、 2、 3, 我们可以这 样处理 :受众数最大与运用推广资金最少的矛盾最终是为了使得推广效果最好,那么就定义一个指标,作为推广效果的判定,根据提出的难点 1、 2、 3 ,可以定义推广资金与受众数的比值最为评价指标,也就是用花在每个粉丝身上的平均推广费用来衡量推广效果。 对提出的难点 4,乙公司同样预算 20 万,说明乙公

6、司与甲公司具有相同效力的推广强度,而,乙公司目前的市场占有率是甲公司的 1.5 倍,也就是说在推广过程中,甲公司每新发展 5个粉丝,其中就有 3 个已经是乙公司的粉丝,需要剔除。 对于 培训兼职人员的问题在于值不值得培训,培训后能不能带来 最 终受众 的增加,以及如果值得培训,那么在 100 天的哪 个时间 培训 能使得这 100 天的 受众 数最多。 可以先只对一个专业推广员在这 100 天中的安排做讨论 讨论怎样的安排能是得最后的效果最好。 2.1.2 问题二的难点 与分析 : 在这个问题中,需要关注这样一句话:“ 其中仅有一些粉丝数较少或者经常无目的添加关注的网友愿意接受邀请” ,那么这

7、句 话 涉及到了受邀请粉丝的比例,需要求出一个比例范围,在这个比例范围中,这种软件的出现是不会影响第一问中的结果的,当比例超过某一值时,这种软件的出现将会影响上面问题的结果,需要在目标函数中加入新的目标,调整人员安排。 2.2 问题的突破点 2.2.1 问题一的突破点: 1、以 推广资金与 发展的粉丝 数的比值最为评价指标,也就是用花在每个粉丝身上的平均推广费用来衡量推广效果。 2、 先只对一个专业推广者在这 100 天内作安排,使得效果最好。 2.2.1 问题二的突破点: 1、受邀请粉丝的比例是个不确定数,它决定着最终结果是否受影响。 2、受邀请粉丝的比例显然是以区间体现出来的,需要反映什么

8、区间段对元问题有影响,什么区间段对原问题没有影响。 3、 模型的假设 1、 假设所有网络普通用户的转发行为都发生在第一次看到该条新 闻之后此后看到同一条新闻,用户将不再转发此新闻。 2、假设专业推广者的粉丝均为普通网络用户 。 3、 随题数据具有一般的代表性,可以作为对整体预测的依据。 4、假设 虑粉丝 基数 不会 随时间的变化而 有 减少 的可能 。 5、假设兼职推广者不 会因 工资 涨幅的 影响而跳槽 。 6、假设每一次的新增粉丝对所接受的消息都会传播给其自己的所有粉丝,并且粉丝的粉丝也会继续传播给自己的粉丝,不停的延续下去,不存在只读 不传 的用户。 3 7、假设市场中只有甲乙两家 公司

9、 在竞争 并占有市场。 8、假设 培训过的 兼职推广者一旦 接受 培训,就会一直 为甲公司 工作 直至 第 100 天。 4、 符号说明 符号说明: jw 从第一天到第 j 天总共花费的资金 jR 从第一天到第 j 天总共产生的知名度 jn 第 j 天招聘的专业推广者 jm 第 j 天所培训的网络推广者 ()fx 平均在粉丝身上的费用之差 pz专专业推广者发展的粉丝总数 pz兼 兼职推广者发展的粉丝总数 5、 模型的建立与求解 5.1 数据处理 5.1.1 数据分析 与优化加权重复度计算 : Twitter 社交网络的数据在 SPSS 中打开一共有两列, 835541 行,第一列有 2503

10、个用户名表示有 2503 个信息的传播者;第二列有 465017 个用户名,表示 有 465017 的 真实 丝数 , 那么第二列重复的粉丝数就有 835541-465017=370524。 此处,可以考虑直接求解一次信息传播中粉丝的 平均 重复度: 370524= = = 4 4 . 3 5 %835541重 复 粉 丝 数重 复 度 计 算 粉 丝 数 但仔细分析数据发现,这 2503 个传播者所形成的粉丝数差异还是相当大的,如果直接像上述方法求重复度 ,无法真实反应粉丝数特别大与粉丝数特别小的那些传播者造成的重复度。 我们用图直观的感受下这种差异,如下图 : 图 1: 部分传播者的粉丝数

11、直观图 上面部分的传播者粉丝数能够比较清晰的看出传播者之间还是有蛮大的粉丝数差异的。 下面是全部 2503 个传播者的粉丝数直观图,看这张图的时候很直观的体现应该是4 大部分的传播者的粉丝数相对都比较大,大致靠近 500。 图 2: 所有传播者粉丝数的直观图 由此考虑,本文对上述模型进行修正,将 2503 个传播者按其粉丝 数分成若干组,组距定为 100,这样就将原来的一张表,分成了由粉丝数大小决定的若干张子表,再有上述方法分别求出每一个粉丝数区间下的重复度。如下表: 表 1: 粉丝数区间数据统计表 粉丝数区间 传播者数 总人数 真实粉丝数 粉丝重复数 重复 度 0-100 1n 522 19

12、998 1m 11130 8868 1q 27.34% 101-200 2n 241 35038 2m 19500 15538 2q 34.93% 201-300 3n 150 37417 3m 20824 16593 3q 39.27% 301-400 4n 130 46283 4m 25759 20524 4q 54.28% 401-500 5n 1458 695374 5m 387008 308366 5q 44.92% 501 以上 6n 2 1431 6m 796 635 6q 44.37% 总和 N =2503 835541 M 465017 370524 40.83% 完成上述表

13、格后,本文以真实粉丝数的比例作为权重来计算加权重复度 ,这样能够真实反应个部分粉丝的重复比例,更加 切合实际。 加权重复度模型如下: 61iiimqqM即 : 3 5 61 2 41 2 3 4 5 6+m m mm m mq q q q q q qM M M M M M 最终计算得: 40.83%q 5.2.2 普通用户粉丝基数的计算: 由于推广这种行为只有专业 推广者 与兼职推广者才会做,也只有他们才会每 天发展大量新 的粉丝,那么对于普通用户来说,他们在接受到某一信息时,其一是将这一 信息传播给自己的粉丝,再由粉丝传播给粉丝的粉丝, 其二就是自己发展的 20 粉丝, 很显然,这里就要计算

14、普通用户的平均 粉丝基数了,通过 Twitter 的数据, 可以通过加权平均来计算普通用户的粉丝基数。 5 上面在做重复度的时候已经对数据进行了处理,此处正好可以利用上述处理的数据计算加权平均粉丝基数。 26611i i iiiiim m mw n M n M即: 2 2 22 2 23 5 61 2 41 2 3 4 5 6m m mm m mw n M n M n M n M n M n M 最终计算结果为: 334w 5.2 问题一模型的建立与求解: 专业推广者每天发展 500 个粉丝后,这 500 个粉丝会将信息传给自己的粉丝,粉丝再往下传给自己的粉丝,不停的延续下去 ,但是受乙公司市

15、场占有率的影响,这 些 粉丝中可能就有 3/5 被乙公司发展去,成为乙公司的粉丝,从而不 能成为 甲公司的 受众 。 那么, 首先我们先来考虑只有一个专业推广者的情况,在只有一个专业推广者的情况下,会有哪些决策呢?很显然只有两种,要么让其自己发展粉丝,要么让其培训兼职推广 者来发展粉丝,那么这两种情况下到底应该 选择呢,下面来比较下只哟一个专业推广者这两种决策下发展粉丝的效率值,或者说,计算这两种决策最终平均在每个粉丝身上的花费,计算过程如下表: 表 2: 两种方案对比计算表 t 1t ti 自己发展粉丝 粉丝数 2500 15 q 2 2225 0 0 1 2 05 q z专 费用 500

16、500 500 平均费用 1215 q 2 2212 1 205 q z专 p 培训兼职推广者 粉丝数 2700 15 q 2 2227 0 0 1 2 05 q z兼 费用 1500 1500 平均费用 7215 15 q 2 22721 5 1 2 05 q z兼 p 注: 其中: 40.83%q 2238 8 1 8 8500 8 81 8 8nninqqzqq 专 2238 8 1 8 8700 8 81 8 8nninqqzqq 兼 6 22318 8 1 8 8881 8 8nninzqqqq 专 p 22315008 8 1 8 870 0 8 81 8 8nninzqqqq 兼

17、 p由表可以看出,平均在粉丝身上的费用随着时间的延长,数据变的越来越小,第 t 天当天体现的是让专业推广者自己发展粉丝比让其培训兼职推广者 来发展粉丝 的效率高,也就是前者 平均花在粉丝身上的钱少 。 经过 i 天后,得到上表中的表达式,下面就比较这两个表达式的大小: 即 : 比较 z专 p 和 z兼 p 的大小, 可以表达为下面的函数式: () pf x z z兼 p 专 很明显,随着时间的推移,两者的平均使用费用虽然都减小了,但是前者始终小于后者,只是两者无限的趋近罢了。 此时考虑到资金的限制,只有 20 万, 在第一阶段中提过有 2 亿的潜在用户,姑且在这认为甲公司目前可以发展的粉丝 广

18、度为 2 亿, 此时可以引进 平均费用界限差值, 即当这 2 亿人用这 20 万全部发展到时,平均的费用 肯定小于 2 0 1=2 1 0 0 0万 元 元 /人亿 人,由此可以 用 平均费用界限差值来解决 上面由于无限趋近而产生的不能确定时间跨度 的问题 。 定义上述 ()fx,当 ()fx小于 11000 ,即 两者的差小于 11000 时, 认为两种决策在这种时间跨度 内的效果相同。 通过程序实现, 可以计算 得到: =6x ,也就是说,当专业推广者第一天推广,或者培训的兼职推广者第一天推广后,只要时间跨度大于了 6天,就视为两个的效果相同,也就是两种决策后在每个粉丝身上的平均费用相同。

19、 通过 Mathematica 编程得到 的图如下 : 图 3: 平均费用差值 演变图 7 图中 的图线表现的有点怪异,他不是平滑的曲线,而是横平竖直的折线,出现这种问题的原因很简单,因为我们定义的变量全是整数,所以图才会变现成这个状态。这也与实际相符。 时间跨度我们 已经 解到,当推广天数大于等于 6 天 时, 在这个时间段的第一天让专业推广者自己发展粉丝和让专业推广者培训兼职推广者去发展粉丝所产生的效果最好,即,使得平均在每个粉丝身上的花费最小。 由此也可以得到另外一个重要的信息,也就是在第 94 天之后,我们就不用再考虑培训兼职推广者了,因为从这天开始 到 最后 一天的 结束,总的时间跨

20、度小于 6,所以如果培训兼职推广者,所产生的平均费用就相对较大。 下图就直观的体现了这 100 天的人员安排方法: 图 4: 一个专业推广者 100 天的大体工作安排 在临界值点之前的任意一点 到第 94天 , 表明 专业推广者 只负责培训兼职推广者 , 通过兼职推广者来达到粉丝数的增长, 两种选择 发展到最终 的平均费用差 小 于千分之一,表明两者的效果相同; 但是在临界值点后面时,就应该选择让专业推广者自己发展粉丝,使得最终效果最佳,也就是平均到粉丝身上的费用最小 。 我们来解释下第一阶段两者效果相当而且前者效果相对又较 好点,我们为什么会选择后者,因为考虑到专业推广者会因为工资的涨幅而出

21、现跳槽的情况,而兼职推广者培训完后随时都可以用,所以第一阶段选择培训兼职推广者最好。 有了上面的 分析 处理之后,下面的问题就显得相对简单了, 在临界值之前的我们只考虑培训的,在临界值之后的时间,我们只考虑专业推广者自己发展粉丝的情况。 求解情况 如下: 表 3: 网络发展者的具体情况 人员类型 专业推广者 兼职推广者 普通网络用户 平均每天增加粉丝数 500 35 20 每天的工资 500 50 0 8 粉丝的发展情况 可以用下图直观的反应出来。 图 5: 粉丝发展途径图 针对上面所做的工作,我们可以 假设每天有 jn 个专业推广者,其中 jpn 个 专业推广者自己增加粉丝数, jqn 个专

22、业推广者培训兼职推广者,即满足条件 j jp jqn n n。 由于一个专业推广者一天 最多可以培训 20 个兼职推广者,所以当天培训 的 兼职 推广者为 jqn 的 20 倍,也就是 20jqn ,再加上之前培训过的 兼职 推广者 11jkk m, jm 表示第 j天所培训的兼职推广者,即总的兼职 推广者为 11 20jk jqkm m n公式推导 第一部分的粉丝总数推导: 1120 35R nt 221 12 0 3 5 1 2 0 2 0 3 5 iiR n t t n t 23231 112 0 3 5 1 2 0 2 0 3 5 1 2 0 2 0 3 5iiiiR n t t n

23、t t n t 通过类比推类法便可得出在第一阶段的第 z 天,其粉丝人数 zR 为 231 2 32 0 3 5 1 2 0 2 0 3 5 1 2 0 2 0 3 5 1 2 0 2 0 3 5 1 2 01 1 1 11 1 1zz z z z zR n t t n t t n t t n t tz i i i 第二部分的粉丝总数推导: 1125 0 0 15R q m 22 1 2225 0 0 2 0 1 155R q m q m 23 1 2 32 2 2 25 0 0 2 0 1 1 2 0 1 1 15 5 5 5R q m q m q q m 9 2225 0 0 2 0 1

24、1126 552 3 42 2 2 22 0 1 1 3 2 0 1 1 3 2 0 1 1 2 0 1 15 5 5 5232 2 2 2 2 21 2 0 1 1 2 1 2 0 1 1 1 2 0 1 1335 5 5 5 5 5R q m q mq q q qq q m q q m q q 322 2 2 2 2 2 21 2 0 1 1 2 1 2 0 1 1 + 1 2 0 1 1 + 14 4 5 65 5 5 5 5 5 5mq q m q q m q q m q m 注 : 48.83%q 那么最终的粉丝总数表达为: 6zR R R 推广资金 公示推导 第一 部分 的推广资金

25、 数: 1 1 2 3 9 42 0 5 0 9 4 9 3 9 2w n n n n 第二 部分的 推广资金 数: 2 1 2 3 4 5 65 0 0 6 5 4 3 2w m m m m m m 两阶段的总推广资金数 : 1 2 1 2 3 9 41 2 3 4 5 6= w 2 0 5 0 9 4 9 3 9 2+ 5 0 0 6 5 4 3 2w w n n n nm m m m m m 总所以, 粉丝数 目标函数: 6zR R R 资金数目标函数: 1 2 1 2 3 9 41 2 3 4 5 6= w 2 0 5 0 9 4 9 3 9 2+ 5 0 0 6 5 4 3 2w w

26、 n n n nm m m m m m 总 约束条件 为: 0 1 0 & 1 , 2 , , 1 0 0200000jjjn n N jw 通过 Mathematica 程序的求解,我们得到了如下的结论: 表 4:最终安排表 天数 第 86 天 第 87 天 第 88 天 第 97 天 其余各天 专业推广者人数 10 10 4 1 0 专业推广者工作情况 10 个专业推广者都培训网络推广者 10 个专业推广者都培训网络推广者 4 个专业推广者都培训网络推广者 1 个专业推广者自身发展粉丝 其余各天不需要专业推广者 对上表计算出的结果我们可能存在很大的疑问,整整 100 天的宣传期,为什么只用

27、了这几天的宣传? 10 其实仔细一 想, 这个答案还是极其合理的,首先存在 20 万的预算资金约束,这区区的 20 万能雇佣的推广者人数有限,能运用的宣传天数又有限,那么,这漫长的 100天宣传期,必然要选择靠近奥运举办期的时间,使得有限的传播能得到更高的关注(越接近奥运举办期,网络活跃度越强)。 5.3 问题二 模型的建立与求解: 现在看问题二时就比较直观了,黑客软件就相当于 一个特殊推广者,他的特殊之处体现在以下两点: 1、 买下这个软件之后就将其投入到推广中,并且在这 100 天的跨度里不间歇的工作,也就是说,他的特殊性在于工作满 100 天。 2、 在第一点特殊性的情况下,使得他的 花

28、费 工资数稳定,相当于 10000 100100 元 /天,不会像专业推广者那样会因为工资的涨幅而出现跳槽。 明白了 这两个 特殊点之后,我们接下来 就来 讨论他的出现对上述第一问产生 的 实质的影响。 首先,这个软件我们可以 把他看做一个特别推广者,那么就与上面的专业推广者一样,每天发展粉丝,也就是说,在这个问题中,只要在上面一问的基础上加上一个新的决策变量就可以求解最优值即最优解。 那么 最终的表达式变为: 100996111 100000202 ( 1 40.83% )5jizjiR R R q tqtt 第一问 中的目标函数值计算得到 27.8 亿,令上述目标函数等于这个值,就得到一个

29、关于 的函数, 目标转化为求 的最小值。 上式中 表示购买的软件数,因为资金最多为 20 万,所以, 0 20 且 为 整 数,那么,在上述的目标函数的求解中,每一个 值的变化都对应得到一个 值,也就是反应了黑客软件对第一问的人员安排有影响,对资金运用影响不大,都是接近于或花满 20 万。得到如下的调整结果: 表 5:购买了对应软件数后对人员安排的调整表 1 第 86 天 第 87 天 第 88天 第 95 天 10 人培训 10 人培训 2人培训 2人发展粉丝 2 第 86 天 第 87 天 第 88天 第 95 天 10 人培训 10 人培训 1人培训 1人发展粉丝 3 第 86 天 第 87 天 10 人培训 10 人培训 4 第 86 天 第 87 天 第 95天 10 人培训 8人培训 2 人发展粉丝 注:整体结果见附录三 当软件购买数发生变化时,对应都能求出 最小的接受邀请的粉丝比例,这表明,第一问的结论会受到黑客软件的影响,所对应的调整就如上表所示。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。