用放缩法证明数列中的不等式 放缩法证明数列不等式是数列中的难点内容,在近几年的广东高考数列试题中都有考查.放缩法灵活多变,技巧性要求较高,所谓“放大一点点就太大,缩小一点点又太小”,这就让同学们找不到头绪,摸不着规律,总觉得高不可攀!高考命题专家说:“放缩是一种能力.” 如何把握放缩的“度”,使得放缩“恰到好处”,这正是放缩法的精髓和关键所在!其实,任何事物都有其内在规律,放缩法也是“有法可依”的,本节课我们一起来研究数列问题中一些常见的放缩类型及方法,破解其思维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅力!一. 放缩目标模型可求和不等式左边可用等比数列前n项和公式求和.分析左边表面是证数列不等式,实质是数列求和不等式左边可用“错位相减法”求和.分析由错位相减法得 表面是证数列不等式,实质是数列求和左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析将通项放缩为等比数列注意到左边左边不能直接求和,须先将其通项放缩后求和,如何放缩?分析注意到将通项放缩为 错位相减模型【方法总结之一】左边可用裂项相消法求和,先求和再放缩.分析表面是证数列不等式,实质是数列求和左边不能求和,应先将