积分变换积分变换第一章 付里叶变换第二章 拉普拉斯变换1.1 1.1 付氏积分付氏积分1.2 1.2 付氏变换付氏变换1.3 1.3 付氏付氏变换的公式和性质1.4 1.4 卷积与相关函数卷积与相关函数2.1 2.1 拉普拉斯变换的概念拉普拉斯变换的概念2.2 2.2 拉氏变换的基本公式和性质拉氏变换的基本公式和性质2.3 2.3 拉氏逆变换拉氏逆变换2.4 2.4 拉氏变换的应用拉氏变换的应用(一一)付氏级数付氏级数称实系数R上的实值函数f(t)在闭区间a,b上满足狄利克莱(DirichLet)条件,如果它满足条件:在a,b上或者连续,或者只有有限个第一类间断点;f(t)在a,b上只有有限个极值点。1.1 1.1 付氏积分付氏积分第一章 付里叶变换 从T为周期的周期函数fT(t),如果在 上满足狄利克雷条件,那么在 上fT(t)可以展成付氏级数,在fT(t)的连续点处,级数的三角形成为 其中 称为频率,频率对应的周期T与fT(t)的周期相同,因而称为基波频率,n称为fT(t)的n次谐波频率。(二二)付氏级数的复指数形式付氏级数的复指数形式 在fT(t)的间断点t0处,式(1.1.1)