矢量分析与场论第一章 矢量分析一 内容概要1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。2 本章所讨论的,仅限于一个自变量的矢性函数,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数或者,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。3 本章的重点是矢性函数及其微分法,特别要注意导矢的几何意义,即是位于的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长s,即矢性函数成为,则不仅是一个恒指向s增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。4 矢量保持定长的充分必要条件是与其导矢互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数为单位矢量,故有,此外又由于,故。(圆函数还可以用来简化较冗长的公式,注意灵活运