1、电气传动系统的智能控制【摘要】随着自动化技术的飞速发展 ,电气传动控制系统也日新月异,电气传动控制系统的概念从出现以来,电气传动控制系统又有了新的发展。本文对电气传动系统的智能控制做了简要的探究。 【关键词】电气传动系统智能控制人工智能 中图分类号:TU976+.1 文献标识码: A 文章编号: 一、电气传动自动控制系统 电气传动系统又称电力拖动系统,是以电动机作为原动机的机械系统的总称。其目的是为了通过对电动机合理的控制,实现生产机械的起动,停止,速度、位置调节以及各种生产工艺的要求。随着技术的进步及社会对环保、节能要求的日渐严格,电气传动系统在社会各方面的使用越来越广泛。如何优化、设计电气
2、传动系统,以实现更低廉的成本、更好的性能就具有十分重要的意义。 近年来许多新理论新策略应用于电气传动系统中,并获得了良好的效果。但对大部分系统而言,其基本的闭环控制结构、利用调节器对控制对象进行校正以使系统符合要求的方法基本未变。所以,我国电气传动系统设计领域的权威专家陈伯时教授总结出的调节器的“工程设计方法”,目前在实际设计中仍然是主流设计方法。如何设计出优秀的调节器依然是电气传动系统优化设计的主要内容。因此借鉴了“工程设计方法”的基本思想,以电气传动系统的优化设计为目的,在现有的调节器“工程设计方法”基础上,采用其采用少量典型系统、分步设计的基本设计思路,以系统闭环幅频特性峰值、调节时间最
3、小为最优化原则,分别针对典型、型系统研究出一套更能满足实际工程需要的设计方法。并总结出了便于设计者使用的参数、性能指标值计算公式及图表。针对交流电机矢量控制系统鲁棒性差的问题则进行了研究并提出了优化方案。 利用 MATLAB 编程和 SIMULINK 仿真对所设计的系统进行验证,结果表明针对典型、型系统的设计方法所设计出的系统性能指标及设计灵活性均好于“工程设计方法” ;针对典型型系统的设计方法则是“工程设计方法”所未涉及而又实际需要的,故填补了“工程设计方法”的空白;在交流电机矢量控制系统中引入复合磁链观测器及双层模糊控制器后,系统的鲁棒性及性能得到了提高。 二、常见的智能控制系统 1、模糊
4、控制 模糊控制就是用模糊集合来刻画人们日常所使用的概念中的模糊性,从而使控制器能够模仿人的控制思维的一种控制方式,尽管模糊控制器的结构比较复杂,但是其输入输出特性都是比较简单的形式,在实际应用中,如果在模糊控制器上增加积分效应那么它就相当于一个 PID 控制器。 2、单神经元控制 众所周知,神经网络具有很强的信息处理能力,可以高速的解决许多复杂问题,但是不可否认,神经网络缺乏计算机硬件的支持。可是从控制电气传动系统这一角度出发,单神经元控制器构成的电气传动控制系统可以很好的完成控制系统工作的任务,并可以提高系统的鲁棒性。 三、人工智能在电气传动系统中运用 人工智能控制技术一直没能取代古典控制方
5、法。但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。 由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及 DSP 技术的进步,直流传动正逐渐被高性能的交流传动所取代。但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。具信使用人工智能的直流传动技术能得到进一步的
6、提高。 高性能的交流传动瞬态转矩的控制性能类似于他励直流电机的控制性能。现有两种高性能交流传动的控制方法:矢量控制(VC)和直接转矩控制(DTC)。矢量控制是德国的研究人员在二十多年前提出的,现在已经比较成熟,并已广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。尽管在高性能驱动产品中使用 AI 技术会极大地提高产品的性能,可是到目前为止只有两个厂家在他们的产品中使用了人工智能(AI)控制器;直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在 ABB 公司已向市场推出了直接转矩控制的传动产品,使得人们对
7、直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。 人工智能控制器可分为监督、非监督或增强学习型三种。常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。常规模糊控制器的规则初值和模糊规则表是既定“apriori”型,这就使得调整困难,当系统得不到“apriori”(既定)信息时,整个系统就不能正常工作。而应用自适应 AI 控制器,例如使用自适应模糊神经控制器就能克服这些困
8、难,并且用 DSP 比较容易实现这些控制器。 常规模糊逻辑控制器的设计经常使用尝试法。需要“apriori”信息,如运用自适应智能控制器就不需要“apriori” (apriroi 规则库和隶属函数)信息。值得注意的是,与常规非自适应智能控制器相反,它根据输入信号更新它的“参数” ,换句话说,它对变化的输入信号具有适应性。自适应控制器分两类:间接和直接控制器,间接自适应人工智能控制器有一个实时辩识模型,用于控制器的设计,间接控制器在每个采样周期需要采样控制对象的输入和输出信号,辩识器和控制器有很多形式,而直接 AI 控制器用特性表来实现对控制对象的控制,这个特性表由两个连续采样周期间的误差的变
9、化量构成,用来控制电流响应。 如用模糊逻辑控制器,最简单的应用可能是标量因子的运用。这种方法用现在的非自适应驱动器很容易实现,因而对工业界具有很大的吸引力。用改变隶属函数形状的方法可实现相似的效果。这种运用也可能通过改变规则来实现,如用直接 AI 控制器来实现,就是自适应控制器。它在每个采样瞬间先使用上一个采样周期采用的规则,如果得不到满意的特性,就用新的规则替代,从而得到满意的特性。 四、电力系统中的智能控制 在电力传动系统中应用智能控制理论已经引起了许多学者的研究兴趣,专家表示通过智能系统的合理应用很可能将电力系统的控制水平提升一个台阶。目前所使用的交直流传动系统的控制手段比较成熟,如矢量
10、控制,闭环控制等都有很好的效果。虽然利用 PID 控制法可以很容易的完成数学建模进行传统的控制,但是可以发现实际的电力传动系统并不是稳定不变的,电机本身的一些参数要随着其工作状态的改变而不断变化,这就为传统的建模控制带来了很大的困难。智能控制便可以很好的解决这一问题,首先智能控制是采取非线性,变结构的模式来进行工作的,它可以很好的克服电力传动系统的变参数问题,从而在很大程度上提高电力传动系统的鲁棒性。另外值得注意的是将智能控制应用到电力传动系统中时要结合传统的控制理念共同作用,如果完全排斥传统控制方法,生搬硬套的直接应用智能控制不但不能发挥其优势反而会引发一系列问题,因此在引入这一控制手段时要
11、注意继承一些传统的控制理念,做到扬长避短。就拿交流电机为例来说,前面已经说到交流电机以往采取矢量控制和闭环控制,因此在将智能控制引入之一系统中时,应该保留一些矢量控制法和 PID 控制法,可以将智能能控制作为外环控制,将一些传统的控制手段用做内环做辅助控制,这样新旧相结合的方法可以将智能控制的优势充分的发挥出来,提高系统的工作效率。这主要是因为内环的控制可以帮助外环完成采样工作,提高外环采样频率同时通过内环的控制可以减少外环的控制误差。 结束语 当前世界上正处于信息化的时代,而我国工业化尚未完成,以信息化带动工业化是我们的重要任务。电气传动是工业化的重要基础、智能化的控制也将会得到逐步的推广。 参考文献 1 王云坡. 试述人工智能在电气传动控制中应用J. 黑龙江科技信息. 2009(08) 2 阚蓉. 电气传动技术的发展现状及趋势J. 黑龙江科技信息. 2008(20) 3 阎巍娟. 人工智能控制技术在电气传动领域的运用J. 中国新技术新产品. 2008(08)