北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt

上传人:99****p 文档编号:1584809 上传时间:2019-03-06 格式:PPT 页数:53 大小:1.56MB
下载 相关 举报
北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt_第1页
第1页 / 共53页
北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt_第2页
第2页 / 共53页
北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt_第3页
第3页 / 共53页
北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt_第4页
第4页 / 共53页
北京邮电大学--计算机学院--离散数学-3.2&3.3-Growth-of-Functions.ppt_第5页
第5页 / 共53页
点击查看更多>>
资源描述

1、Discrete Mathematical StructuresYang JCollege of Computer Science it may depend on your choice of kn Once you choose k and c, you must prove the truth of the implication (often by induction)8* College of Computer Science & Technology, BUPTPoints about the definitionn Note that f is O(g) so long as a

2、ny values of c and k exist that satisfy the definition.n But: The particular c, k, values that make the statement true are not unique: Any larger value of c and/or k will also work. n You are not required to find the smallest c and k values that work. (Indeed, in some cases, there may be no smallest

3、 values!)However, you should prove that the values you choose do work.9* College of Computer Science & Technology, BUPTlittle-o of gn In calculusn Ifn Thenn f is o(g) (called little-o of g)10* College of Computer Science & Technology, BUPTTheoremn If f is o(g) then f is O(g).n Proof: n by definition of limit as n goes to infinity, f(n)/g(n) gets arbitrarily small.n That is for any e 0, there must be an integer N such that when n N, | f(n)/g(n) | e .n Hence, choose c = e and k = N.n Q. E. D.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。