控制混凝土裂缝提高混凝土耐久性.doc

上传人:99****p 文档编号:1673686 上传时间:2019-03-10 格式:DOC 页数:13 大小:36KB
下载 相关 举报
控制混凝土裂缝提高混凝土耐久性.doc_第1页
第1页 / 共13页
控制混凝土裂缝提高混凝土耐久性.doc_第2页
第2页 / 共13页
控制混凝土裂缝提高混凝土耐久性.doc_第3页
第3页 / 共13页
控制混凝土裂缝提高混凝土耐久性.doc_第4页
第4页 / 共13页
控制混凝土裂缝提高混凝土耐久性.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、控制混凝土裂缝提高混凝土耐久性摘要:随着我国基础设施建设工程规模的不断加快加大,混凝土成为用途最广、用量最大的建筑材料之一。近百年来,混凝土强度不断的提高成为它主要的发展趋势。发达国家越来越多的使用 50MPa 以上的高强混凝土。有些远见卓识的专家考虑到某些工程的需要,在提出高强度的同时,也提出耐久性和施工和易性的要求。混凝土的耐久性随着科学技术和经济的发展越来越被人们重视了,而混凝土耐久性除了受配合比自身的影响外,还有混凝土结构在实际使用中,经常由于受相邻部件牵制而处于不同程度的约束状态,因而产生裂缝。裂缝将会导致混凝土构件承载力降低,影响混凝土的抗渗性和耐久性。 关键词:混凝土;裂缝;收缩

2、;原因;控制 中图分类号;TU377.1 文献标识码:A 正文:混凝土裂缝是混凝土的一种常见病和多发病。绝大多数发生于施工阶段,其原因复杂多变,一般可分为微观裂缝和宏观裂缝两大类。微观裂缝是指肉眼看不到的、砼内部固有的一种裂缝,它是不连贯的。宽度一般在 0.05mm 以下,这种砼本身固有的微观裂缝,荷载不超过设计规定的条件下,一般视为无害。 宏观裂缝宽度在 0.05mm 以上,并且认为宽度小于 0.20.3mm 的裂缝是无害的,但是这里必须有个前提,即裂缝不再扩展,为最终宽度。 裂缝产生的形式和种类很多,有设计方面的原因,但更多的是施工过程的各种因素组合产生的,要根本解决混凝土中裂缝问题,还是

3、需要从混凝土裂缝的形成原因人手。正确判断和分析混凝土裂缝的成因是有效地控制和减少混凝土裂缝产生的最有效的途径。混凝土裂缝不仅影响桥梁外观,而且影响了桥梁的耐久性。因此,我们应当重视混凝土裂缝,严格控制桥梁质量,针对我公司近年来生产的桥梁,提出以下相关建议或意见,仅供参考。 一、引起高性能混凝土裂缝的主要原因 1、塑性收缩 塑性收缩发生硬化前的塑性阶段。这里是指在塑性阶段混凝土由于表面失水而产生的收缩,多见于道路、地坪、楼板等大面积工程,以夏季施工最为普遍。混凝土在新拌状态下,拌合物中颗粒间充满水,如果养护不足,表面失水速率超过内部水向表面迁移的速率时,则造成毛细管中产生塑性收缩。高性能混凝土的

4、水胶比很低,自由水分少,矿物细掺料对水有更高的敏感性,在上述工程中容易发生塑性收缩而引起表面开裂。影响塑性收缩开裂的因素是风速、环境温度和相对湿度等,内部因素是水灰比、细掺料、浆集比、混凝土的温度和凝结时间等。通常,预防塑性收缩开裂的方法是降低混凝土表面的失水率。采取防风、降低混凝土的温度、延缓混凝土凝结速率等措施都能控制塑性收缩。最有效的方法是终凝(开始常规养护)前保持混凝土表面湿润,如在表面覆盖塑料薄膜、喷洒养护剂等。 2、温度收缩 随着温度的变化而发生膨胀或收缩变形称为温度变形。混凝土具有热胀冷缩的性质。不同集料的热膨胀相差很大。在同一混凝土中,不论集料和水泥浆之间或不同集料之间的热膨胀

5、差别是导致混凝土破坏的因素之一。混凝土的温度膨胀系数为 0.00001,即温度升高 1,每米膨胀0.01mm。大体积混凝土裂缝主要是由温度变形而引起的。在混凝土硬化初期,水泥水化会放出较多的热量,由于混凝土是热的不导体,散热缓慢,如不采取人工降温措施,大体积混凝土内部的温度将增高,有时可达到 5070,在混凝土内部产生较大的体积膨胀。而在混凝土外部却随气温降低而冷却收缩。因此混凝土内部膨胀与外部收缩这种相反的作用使外部混凝土产生很大的拉应力。当外部混凝土所受的拉应力一旦超过混凝土的极限抗拉强度时,外部就会开裂,而这种裂缝会严重破坏混凝土结构物整体性和降低耐久性,所以如何减少温度变形是一个很重要

6、的问题。 浇注大体积混凝土时,应确定大体积混凝土施工方案,作试算分析工作,在大体积混凝土浇筑块体在浇筑前应进行温度、温度应力及收缩应力验算分析。其目的为了确定温控指标(温升峰值、芯部与表层温差、降温速度、混凝土表层与环境温差)及制定温控施工的技术措施(包括混凝土原材料的选择、混凝土拌制、运输过程及混凝土养护的降温和保温措施,温度监测方法等) ,以防止或控制有害裂缝的发生,确保施工质量。温差以不超过 20为宜,轨道板、预应力桥梁不得超过 15,这一要求适用于最小边长尺寸在 13 米范围内的大体积混凝土。应采用以下措施减少温度变形,防止出现裂缝:采用水化热低的水泥;在保证强度的前提下,降低水泥用量

7、和最大限度减少混凝土的单位用水量来降低水化热;利用夜间或低温季节浇注混凝土以降低浇筑温度;适当减薄浇筑层的厚度,利用层面散热;设法降低拌合水和原材料的温度,以降低浇筑温度;在混凝土中埋设冷却水管,浇筑后通水冷却以降低水化热产生的温升;应合理分缝分块,改善约束条件,减轻约束作用;注意避免引起应力集中等不利结构形式;合理的安排施工程序,避免过大的高差和长期暴露面等。 在控制大体积混凝土裂缝的措施方面,理论研究远滞后于工程实践,迄今为止,对于大体积混凝土温度场变化和温度裂缝产生的规律性,还缺乏系统研究,混凝土温度及温度应力的计算还不够精确;在防止大体积混凝土开裂问题上,也是考虑外部因素比较多,而在提

8、高大体积混凝土本身材料特性以及开发新的混凝土品种上研究得很少。在桥梁建设当中,属于大体积混凝土的温控防裂只采取了少量几项措施,包括粉煤灰加减水剂和采用冷却水管。但这远远不够的,大体积混凝土的温控要从材料做起,再加上合适的施工措施,才能达到避免开裂的目的。 3、自身收缩(自缩) 混凝土在恒温绝湿条件下,由胶凝材料的水化作用引起体积变形称为自身体积变形,而自身体积变形为收缩的称自生收缩(自缩) ,这种收缩是由化学作用引起的。因此,自收缩是化学收缩之一。 混凝土的自身收缩与水泥品种、水泥用量及掺用混合种类有关,水泥用量少时,自缩值小。普通硅酸盐水泥拌制的水泥混凝土的自生体积变形一般是收缩,而矿渣水泥

9、混凝土的自生体积变形早期是膨胀。近年来,随着高强混凝土和高性能混凝土的应用和发展,发现低水胶比的高强混凝土和高性能混凝土的自收缩比普通混凝土的自收缩大的多。高性能混凝土的水胶比很低,能提供水泥水化的自由水分少,早期强度较高的发展率会使自由水消耗较快。在外界水分供应不足的情况下,水泥水化不断消耗水分而自干燥产生自生的原始裂缝,影响混凝土的强度和耐久性。 混凝土自收缩的大小不仅与水胶比、细掺和料的活性、水泥的细度等因素有关。 掺外加剂也是制备高性能混凝土的关键技术之一。 外加剂的性能品质、匀质性和与水泥的相容性是成功配制高性能混凝土的基本条件。由于目前外加剂品种繁多,产品质量参差不齐,市场管理又比

10、较混乱,选用时,一定要注意不同外加剂的使用功能和特点。外加剂不但要与基准水泥还应与工程所用水泥具有良好的相容性。 适量引气能够提高混凝土的抗冻性,同时能够改善混凝土的其他性能。混凝土引气的方式有两种,一种是掺加引气型减水剂,一种是减水剂和引气剂双掺。客运专线高性能混凝土前期施工采用掺加引气型减水剂的方式引气,但在过程中发现掺加引气型减水剂引入的气泡质量较差,混凝土结构表面气孔较多。含气量要求大于等于 4%的混凝土采用减水剂和引气剂双掺的方式引气,控制减水剂的含气量不大于 3%。为了减少由于收缩而引起的混凝土开裂,结合目前高效减水剂的生产技术水平,将减水剂的收缩率比规定为不大于 125%。 提高

11、混凝土的耐久性,尤其是抗冻性,引气剂起到十分重要作用。混凝土掺入少量引气剂后,就能使每方混凝土中引入数千亿个微小气泡,使混凝土的抗冻融性能大大提高。国内外大量研究表明,混凝土中掺加引气剂后,对混凝土的工作性和匀质性有所提高。引气剂不仅能减少混凝土的用水量,降低泌水率,更重要的是混凝土引气后,水在拌合物中悬浮状态更加稳定,因而可以改善骨料底部浆体泌水、沉陷等不良现象。因此,适量引气是配制抗冻高性能混凝土的重要手段之一。 4、干缩变形 混凝土在硬化过程中,由于水分的散失,体积发生收缩的现象称为混凝土的干缩。 水泥水化生成硅酸钙胶体结晶体,一般结晶体不会受到干燥条件的影响,因此支配干缩的主要因素是胶

12、凝体的数量和特征。胶凝体中有大量的微细孔隙,在干燥条件下,胶体中自由水逐渐蒸发产生毛细管压力,压缩管壁,胶体的体积也随水分的蒸发而减少,因此引起混凝土的干缩。干缩与水泥品种、细度、水灰比、龄期、水泥的用量和单位用水量有关。矿渣水泥比普通水泥的收缩大;高强度水泥,细度较细,收缩较大。混凝土中若水泥用量多和单位用水量多,胶体数量就比较多,因而混凝土干缩较大。集料的绝对体积愈大,混凝土的干缩率愈小。在混凝土中增大集料绝对体积,对干缩有一定的抑制作用。干净的砂石、捣固密实的混凝土,收缩率小;在水中或潮湿的条件下养护,可减少混凝土的收缩。经蒸汽养护的混凝土收缩率较小。 5、施工现场外部原因 (1) 现场

13、浇捣混凝土时,振捣或插入不当,漏振、过振或振捣棒抽撤过快,均会影响混凝土的密实性和均匀性,诱导裂缝的产生。 (2)高空浇注混凝土,风速过大、烈日暴晒,混凝土收缩值大。 (3) 对大体积混凝土工程,缺少两次抹面,易产生表面收缩裂缝。 (4) 现场养护措施不到位,混凝土早期脱水,引起收缩裂缝。 现场模板拆除不当或拆模过早,引起拆模裂缝或拆模过。 支撑混凝土构件的墩台柱不均匀沉降,也容易造成开裂。 合理选定混凝土配合比 混凝土配合比选定的好坏,直接关系到结构物的寿命和整个工程的经济效益。 混凝土的 适配强度严格按照铁路混凝土强度检验评定标准TB10425-94 的规定。混凝土的强度标准差应由强度等级

14、相同,且混凝土配合比和施工工艺条件基本相同的混凝土标准试件统计求得。考虑到目前混凝土生产单位和管理水平,强度标准差取中等水平。 混凝土的早期强度越高,混凝土早期开裂的可能性越大。为克服混凝土的这一不足,充分发挥矿物掺合料的后期火山灰效应,宜按 56d 龄期作为混凝土标准强度的验收龄期。混凝土的抗裂性对于抵抗环境作用侵蚀甚微重要,我国现行标准还未对水泥(胶凝材料)或混凝土抗裂性检验的规定。通过传统的混凝土干燥收缩试验所获得的收缩数据,并不能全面评价混凝土的抗裂性能,因为后者混凝土的抗拉强度、弹性模量特别是徐变或约束状态下的应力松弛能力。采用收缩时受约束的环形试件和平板试件来评定混凝土的抗裂性可在

15、一定程度上克服这些缺点,而且方法简便,但不用作定量分析,只能用于不同原材料和配比混凝土之间的相对比较。 不同环境下、不同程度水胶比混凝土矿物掺合料的范围,均对混凝土耐久性有很大影响。以粉煤灰和矿渣粉为代表的掺合料赋予混凝土高工作性能、高耐久性、高体积稳定性,已达成共识,因此矿物掺合料已经成为铁路混凝土的必要组分。矿物掺合料对混凝土力学性能的影响,在碳化环境、氯盐环境、冻融破坏环境、盐类结晶破坏环境以及磨蚀环境对矿物掺合料掺量有所规定,根据不同水胶比亦对掺量有规定。在化学侵蚀与氯盐环境下,矿物掺合料能够大幅度地提高混凝土的抗蚀性,在混凝土制备时必须掺加矿物掺合料。主要参考美国混凝土结构设计规范A

16、CI318 与混凝土结构耐久性设计规范GB/T50476-2008。 配合比设计是确保混凝土耐久性最关键的环节,水胶比与最小胶凝材料用量限值是确保混凝土耐久性最关键的环节,水胶比与最小胶凝材料用量限值是保证混凝土耐久性所需要的抗渗性与力学性能的重要技术参数。由于混凝土拌合时间的用水量在其浇筑成型后被水化合的很少,大量游离水随后成为混凝土的薄弱环节,给混凝土的开裂和耐久性带来不利影响。近年来,从机理到工程应用都可以证实,控制混凝土拌合物最大用水量可以有效地改善其各项性能。 碳化环境:混凝土碳化,一方面与 CO2 在混凝土中的扩散速度密切相关,其取决于混凝土的孔隙率和空隙结构,即取决于混凝土的水胶

17、比;另一方面还与混凝土吸收 CO2 的能力有关,其取决于胶凝材料中 Cao 含量。碳化环境下,当采用能够减水的掺合料配制混凝土时,这种混凝土也具有较强的抗碳化能力,但对于水胶比较大的混凝土,矿物掺合料掺量不宜过大。 氯盐环境:实践及大量试验表明低水胶比的掺合料混凝土比同水胶比的硅酸盐水泥混凝土更具有更高的抗氯盐侵蚀性能,因此氯盐环境下,不宜单独采用硅酸盐水泥作为胶凝材料,宜采用矿物掺合料及水泥作为胶凝材料,掺量根据相关标准确定。 化学侵蚀环境:提高混凝土耐硫酸盐化学侵蚀的主要技术措施有三条,即第一选择耐硫酸盐性能的良好水泥,水泥中 C3A 尽量要少。第二是合理的掺用矿物掺合料,一般掺量不得少于

18、 40%,随着掺合料增加,混凝土耐蚀性能提高,但应综合考虑,不宜太高;第三通过掺高效减水剂,降低混凝土单方用水量,引气能够有效抑制或减缓混凝土在硫酸盐化学侵蚀和硫酸盐结晶引起的膨胀,即显著降低硫酸盐结晶造成的混凝土抗折强度降低及表面侵蚀。在化学侵蚀环境下,不得使用石灰石作为掺合料。 盐类结晶破坏环境:干湿交替情况下,水中的硫酸根离子浓度如大于 200mg/L,或土中硫酸根离子浓度大于 1000mg/L,就有可能损害混凝土。地下水、土中的硫酸盐渗入到混凝土的内部,并在一定条件下使得毛细孔水溶液中硫酸盐浓度不断积累,当超过饱和浓度时就会析出结晶而产生很大压力,导致混凝土破坏。采用适当引气可以适当释

19、放硫酸盐结晶破坏压力。因此,盐类结晶破坏环境,宜使用引气混凝土。 磨蚀环境:混凝土的抗磨蚀性能能主要取决于混凝土的强度、骨料的强度,硬度和韧性,对磨蚀环境下混凝土的原材料提出特殊要求,尤其骨料和胶凝材料方面。因而原材料、掺合料最大限量及水胶比、最低强度等级和胶凝材料用量予以规定,同时低水胶比,以便改善表面砂浆的强度和耐磨性。所以适当掺加补偿早期收缩的膨胀剂或减水剂。 冻融破坏环境:大量试验与实践证明,提高混凝土的抗冻性的途径有两方面,第一提高混凝土的密实度或强度;其二适当引气。引气混凝土具有较高的抗冻性事实已被证明,引气不仅能够提高混凝土的抗冻性,而且能够提高混凝土的工作性能;然而,高强混凝土

20、黏度大、施工难。因此严格控制混凝土的含气量。气泡大小与气泡稳定性直接影响引气剂的质量,目前采用气泡间距系数来控制混凝土内部的气泡质量,确保混凝土中引入的气泡微细、均匀、稳定。 通过以上,为了提高性能混凝土的耐久性,只有合理地选用配合比。二、 减小混凝土收缩控制混凝土开裂的措施 1、合理的养护温度 以 20为标准养护的温度在世界上已经有很长的历史了。但是实际上混凝土内部的温度远非 20。可在混凝土表面采取保温保湿养护,采用温水养护、外部包裹保温材料和塑料布。对于大体积混凝土可采用预埋冷却水管同低温水冷却。通水时间一般在 15 天左右。混凝土温度与冷却水温之差不宜超过 25,水流方向应每天改变一次,使构件冷却较为均匀。 2、改善混凝土性能 (1)由于在低水胶比下存在水泥、高效减水剂和矿物细掺和料的相容问题,而且掺入高效减水剂和矿物细掺和料后的塑性和黏度有明显的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。