1、1桥梁断面非线性自激气动力经验模型摘要: 为探讨桥梁断面的非线性自激气动力,基于平衡位置的Taylor级数展开式,建立了简谐运动下桥梁断面非线性自激气动力模型,获得了其复数和实数表达式,并说明了表达式中非线性气动参数的识别方法.该模型反映了简谐运动下桥梁断面非线性自激气动力的谐波叠加特性,可应用于桥梁的非线性气动稳定性分析.最后,应用该模型对某桥梁断面在简谐运动下的非线性自激气动力风洞试验时程数据进行了拟合.拟合结果表明,两者的误差在 3%以内,验证了该模型的正确性. 关键词: 桥梁断面;非线性自激气动力;经验模型;风洞试验 中图分类号: V211.24文献标志码: AEmpirical Ma
2、thematical Model for Nonlinear MotionInduced 当桥梁断面在气流中运动时,会对流场产生干扰,引起表面压力的变化,从而产生随时间变化的空气动力,称为自激气动力. 1971 年,Scanlan 提出了用颤振导数表示的桥梁断面自激气动力模型1,将气动力表示为断面运动状态的线性函数,并在此基础上提出了桥梁颤振临界风速的计算方法.事实上,桥梁断面属于钝体,其自激气动力应是非线性的,并已在风洞试验中获得证实26.尤其对于形式上为典型钝体的桥梁断面,其自激气动力的非线性效应更加突出.因此,桥梁断面自激气动力应考虑非线性效应. 徐旭和曹志远基于瞬态风攻角推导了桥梁等柔
3、长结构沿跨向分布的2非线性气动力表达式78.Diana 基于墨西拿大桥断面的风洞试验结果,提出了以瞬态攻角(位移)及其一阶导数(速度)为变量的非线性气动力表达式56,910.Chen 和 Ma基于桥梁的软颤振现象,提出了用范德波尔方程来描述非线性气动力和软颤振现象的思路11.Wu 和 Kareem从桥梁断面的非线性响应出发,提出了一个基于 Volterra泛函级数的非线性气动力模型1213.Zhang、Chen 等通过对大跨度桥梁非线性颤振的分析,分别提出了考虑紊流风影响的非线性气动力模型1415. 在上述非线性气动力的典型模型中,徐旭提出的模型过于复杂,也没有给出非线性气动参数的识别方法,因
4、此在实践中无法应用.Diana 提出的模型能够较好地描述试验获得的非线性气动力,但模型的适用性和适用范围还需要进一步研究;Chen 和 Ma提出的范德波尔模型无法描述非线性气动系数随振幅变化的非定常性,并暗含气动力只含有三次谐波分量,因此该模型具有很大的局限性;Wu 和 Kareem提出的 Volterra泛函级数模型能够描述气动力的非线性和非定常性,但目前还处于初步研究阶段,并需要可靠的风洞试验数据作为支撑;Zhang、Chen 等提西南交通大学学报第 48卷第 2期王骑等:桥梁断面非线性自激气动力经验模型出的模型,实际上是考虑主梁的几何非线性效应和风攻角的非线性后提出的修正气动力模型,其实
5、质为参数非线性变化的线性气动力模型. 综上所述,目前对于桥梁断面非线性自激气动力模型的研究还处于起步阶段.因此,合理、适用、简便的自激气动力模型亟待研究. 本文以简谐运动下桥梁断面的自激气动力为 研究对象,基于平衡位置的 Taylor级数展开式,建立了由不同谐波3分量叠加的非线性气动力数学模型,推导了非线性自激气动力的复数和实数表达式,并简要介绍了表达式中非线性气动参数的识别方法;基于某桥梁断面非线性自激气动力的风洞试验测试数据,用该模型进行了拟合,两者的误差小于 3%,从而验证了该模型的正确性.1 简谐运动下的Taylor展开式处于均匀流场中的桥梁断面,自激气动力为其运动状态的函数,并可表示
6、为动态的气动力形式(某一时刻的气动力). 考虑到桥梁断面的自激气动力主要与其竖向和扭转运动状态相关,其气动升力 L和力矩 M可分别表示为: 6 结语以在气流中保持简谐运动的桥梁断面为研究对象,基于平衡位置的 Taylor级数展开式,建立了桥梁断面的非线性气动力模型,推导了不同运动条件下非线性自激气动力的表达式,从理论上阐述了简谐运动下桥梁断面的非线性自激气动力由不同倍频或非倍频谐波分量共同组成的特性,并基于等效关系,给出了非线性气动参数的表达式. 风洞试验结果表明,简谐运动下桥梁断面的自激气动力是由不同谐波分量组成的,且以二次和三次谐波分量为主.对试验信号的拟合结果表明,所提出的气动力模型能够
7、准确地描述桥梁断面的非线性自激气动力. 由于试验条件限制,只选取了一种试验断面,并在单自由度条件下对模型进行了验证.为了深入研究桥梁断面自激气动力的非线性效应,今后还需要针对更多断面形状、在不同运动形式下(包括耦合运动和任意运动形式)进行理论研究和风洞试验,以扩展和补充理论模型. 参考文献: 1SCANLAN R H, TOMKO J. Airfoil and bridge deck flutter 4derivativesJ. ASCE Journal of Engineering Mechanics, 1971, 97(6): 17171737. 2陈政清,于向东. 大跨桥梁颤振自激气动力
8、的强迫振动法研究J.土木工程学报,2002,35(5): 3441. CHEN Zhengqing, YU Xingdong. A new method for measuring flutter selfexcited forces of longspan bridgesJ. China Civil Engineering Journal, 2002, 35(5): 3441. 3FALCO M, CURAMI A, ZASSO A. Nonlinear effects in sectional model aeroelastic parameter identificationJ. Jou
9、rnal of Wind Engineering and Industrial Aerodynamics, 1992, 41/42/43/44: 13211332. 4DIANA G, BRUNI S, ROCCHI D. A numerical and experimental investigation on aerodynamic nonlinearity in bridge response to turbulent windCProceedings of the Fourth European & Africa Conference on Wind Engineering. Prag
10、ue: s.n., 2005: 127134. 5DIANA G, RESTA F, ZASSO A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridgeJ. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(6): 441462. 6DIANA G, RESTA F, ROCCHI F, et al.
11、Aerodynamic hysteresis: wind tunnel tests and numerical implementation of 5a fully nonlinear model for the bridge aeroelastic forcesCProceedings of the 4th International Conference on Advance in Wind and Structural, Jeju, Korea: s.n., 2008: 944960. 7XU Xu, CAO Zhiyuan. New expressions of nonlinear a
12、erodynamic forces in civil engineeringCProceedings of ICNM3. Shanghai: Shanghai University Press, 1998: 396401. 8徐旭,曹志远. 柔长结构气固耦合的线性与非线性理论J. 应用数学和力学,2001,22(12): 5765. XU Xun, CAO Zhiyuan. Linear and nonlinear aerodynamic theory of interaction between flexible structure and windJ. Applied Mathematic
13、s and Mechanics, 2002, 22(12): 5765. 9DIANA G, RESTA F, ROCCHI F. A new numerical approach to reproduce bridge aerodynamic nonlinearities in time domainJ. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 18711884. 10DIANA G, ROCCHI D, ARGENTINI T, et al. Aerodynamic instability of
14、a bridge deck section model linear and nonlinear approach to force modelingJ. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 363374. 11CHEN A, MA R. Selfexcited force model and parameter identification for soft flutterC/OLThe 13th International 6Conference of Wind Engineering, Am
15、sterdam, July 1015, 2011. 20110809. http:/folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/412_8page_self-excited_force_model_and_identification_of_soft_flutter.pdf. 12WU T, KAREEM A. Nonlinear modeling of bridge aerodynamicsC/OLThe 13th International Conference of Wind Engineering, Am
16、sterdam, July 1015, 2011. 20110811. http:/folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/382_8page_nonlinear_modeling_of_bridge_aerodynamics.pdf. 13WU T, KAREEM A. Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural networkJ. Journal of W
17、ind Engineering and Industrial Aerodynamics, 2011, 99(4): 378388 14ZHANG X, XIANG H, SUN B. Nonlinear aerostatic and aerodynamic analysis of longspan suspension bridges considering wind structure interactionsJ. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(9): 10651080. 15CHEN X,
18、 KAREEM A. Aeroelastic analysis of bridges: turbulence effects and aerodynamic nonlinearitiesJ. ASCE Journal of Engineering Mechanism, 2003, 129(8): 885895. 716LIAO H, WANG Q, LI M, et al. Aerodynamic hysteresis effects of thin airfoil and streamline box girder under large amplitude oscillationC/OLThe 13th International Conference of Wind Engineering, Amsterdam, July 1015, 2011. 20110811. http:/folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/539_8page_aerodynamic_hysteresis_effects_of_thin_airfoil_and_stream-line_box_girder_with_large_amplitude_oscillation.pdf. (中、英文编辑:付国彬)