1、阿贝尔和伽罗瓦的比较今天我要向大家介绍两位朋友阿贝尔和伽罗瓦 1 阿贝尔与伽罗瓦的不同点 11 两人的个人基本情况比较 12 数学研究的成就不同 阿贝尔证明对一般的四次以上的方程没有代数解 伽罗瓦解决了什么样的方程有代数解,即方程有根式解的充要条件 13 运气不同 “阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在克雷勒杂志上发表了这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他业已成为众所瞩目的优秀数学家之一遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知 ” 但是伽罗瓦的重大创作在生前始终没有机会发表
2、14 成果的广泛性不同 阿贝尔在数学上的贡献,主要表现在方程论、无穷级数和椭圆函数等方面即除了代数方程论之外,阿贝尔还从事分析方面的研究所以说阿贝尔是多产的 但是伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论即伽罗瓦的成果重在代数方程论 15 成就的影响不同 “阿贝尔的一系列工作为后人留下丰厚的数学遗产,为群论、域论和椭圆函数论的研究开拓了道路他的数学思想至今深刻地影响着其他数学分支C埃尔米特(Hermite)曾这样评价阿贝尔的功绩:阿贝尔留下的一些思想,可供数学家们工作 150 年 ” “伽罗瓦最主要的成就是提出了群的概念,
3、并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程正是这套理论为数学研究工作提供了新的数学工具群论它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始 ” 16 心理状况不同 阿贝尔“从满怀希望到渐生疑虑终至完全失望,阿贝尔在巴黎空等了将近一年他寄居的那家房东又特别吝啬刻薄,每天只供给他两顿饭,却收取昂贵的租金一天,他感到身体很不舒畅,经医生检查,诊断为肺病,尽管他顽强地不相信,但实情是他确已心力交瘁了阿贝尔只好拖着病弱的身体,怀着一颗饱尝冷遇而孤寂的心告
4、别巴黎回国 ” 伽罗瓦“对事业必胜的信念激励着年轻的伽罗瓦虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚信他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索 ” 2 阿贝尔与伽罗瓦的相同点与联系 21 都遇到了好老师,受到好老师的指导帮助 “15 岁(1817)时,他幸运地遇到一位优秀数学教师 BM 霍尔姆博(Holmbo)后者在数学上的最大贡献也正是发现并培养了这位数学天才良师耐心细致的教诲,唤起了他学习数学的愿望,使他对数学产生了兴趣 ” “但在第三年(1826),伽罗瓦对修辞学没有下足够的功夫,因而只得重读一年在这次挫折之后,他被批准选学第一门数学课这
5、门课由 HJ韦尼耶 (Vernier)讲授,他唤起了伽罗瓦的数学才能,使他对数学发生了浓厚的兴趣 ” “1828 年 10 月,伽罗瓦从初级数学班升到L PE里查德(Richard)的数学专业班里查德是一位年轻而富有才华的教授,并且具有发掘科学英才的敏锐判断力和高度责任感他认为伽罗瓦是最有数学天赋的人物,只宜在数学的尖端领域中工作 ” 22 都大量阅读了大师的著作 “16 岁那年,他遇了一个能赏识其才能的老师霍姆伯(Holmboe)介绍他阅读牛顿、欧拉、拉格朗日、高斯的著作大师们不同凡响的创造性方法和成果,一下子开阔了阿贝尔的视野,把他的精神提升到一个崭新的境界,他很快被推进到当时数学研究的前
6、沿阵地后来他感慨地在笔记中写下这样的话:要想在数学上取得进展,就应该阅读大师的而不是他们的门徒的著作 ” “他很快地学完了通常规定的课程,并求教于当时的数学大师他如饥似渴地阅读了 A?M?勒让德的著作几何原理和 T.L.拉格朗日的代数方程的解法 、 解析函数论 、 微积分学教程 接着他又研究了 L欧拉(Euler)、CF高斯(Gauss)和 AL柯西(Cauchy)的著作,为自己打下了坚实的数学基础由于他刻苦学习,能着重领会和掌握其中的数学思维方法,因此,这些功课的学习,使他思路开阔,科学创造的思维能力得到了训练和提高他的中学数学专业班的老师里查德说伽罗瓦只宜在数学的尖端领域工作 ” 23 都
7、是很早就显示数学方面的才华 “幼时,他(阿贝尔)就显露出数学上的才能 ” “在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格 ” 24 同样是坎坷的人生开始他们的观点都不 为人所理解重视 “阿贝尔终于在 1825 年 8 月获得公费,开始其历时两年的大陆之行 踌躇满志的阿贝尔自费印刷了证明五次方程不可解的论文,把它作为自己晋谒大陆大数学家们,特别是高斯的科学护照他相信高斯将能认识他工作的价值而超出常规地接见但看来高斯并未重视这篇论文,因为人们在高斯死后的遗物中发现阿贝尔寄给他的小册子还没有裁开 柏林是阿贝尔旅行的第一站他在那里滞留了将近一年时间虽然等候高斯召见的期望终于落空
8、,这一年却是他一生中最幸运、成果最丰硕的时期 1826 年 7 月,阿贝尔抵达巴黎他见到了那里所有出名的数学家,他们全都彬彬有礼地接待他,然而却没有一个人愿意仔细倾听他谈论自己的工作在这些社会名流的高贵天平上,这个外表腼腆、衣着寒酸、来自僻远落后国家的年轻人能有多少分量呢?他通过正常渠道将论文提交法国科学院科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查柯西把稿件带回家中,究竟放在什么地方,竟记不起来了直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了 12 年之久 从满怀希望到渐生疑虑终至完全失望,阿贝尔在巴黎空等了将近一年 ” “1829 年,伽罗
9、瓦在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在 1830 年 1 月 18 日柯西曾计划对伽罗瓦的研究成果在科学院举行一次全面的意见听取会他在一封信中写道:今天我应当向科学院提交一份关于年轻的伽罗瓦的工作报告但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题 然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗瓦的著作,这是一个非常微妙的事故 1830 年 2 月,伽罗瓦将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖论文寄给当时科
10、学院终身秘书傅立叶,但傅立叶在当年 5 月去世了,在他的遗物中未能发现伽罗瓦的手稿就这样,伽罗瓦递交的两次数学论文都被遗失了1831 年 1 月,伽罗瓦在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗瓦关于群论的重要著作,当时负责审查的数学家泊阿松为理解这篇论文绞尽脑汁传说泊阿松将这篇论文看了四个月,最后结论居然是完全不能理解 尽管借助于拉格朗日已证明的一个结果可以表明伽罗瓦所要证明的论断是正确的,但最后他还是建议科学院否定它 ” 本文为全文原貌 未安装 PDF 浏览器用户请先下载安装 原版全文 25 都犯了同样的错误,就是他最初都以为自 己解出了一般
11、的五次方程,可是后来发现了错误, 但他们都能很快意识到了这一点,并重新研究 “接着他研究一般五次方程问题开始,他曾错误地认为自己得到了一个解霍姆伯建议他寄给丹麦的一位著名数学家审阅,幸亏审阅者在打算认真检查以前,要求提供进一步的细节,这使阿贝尔有可能自己来发现并修正错误这次失败给了他非常有益的启发,他开始怀疑,一般五次方程究竟是否可解?问题的转换开拓了新的探索方向,他终于成功地证明了要像较低次方程那样用根式解一般五次方程是不可能的 ” “据伽罗瓦说,他在 1828 年犯了和 NH阿贝尔(Abel)在 8 年前犯的同样错误,以为自己解出了一般的五次方程但他很快意识到了这一点,并重新研究方程理论,
12、他坚持不懈,直到成功地用群论阐明了这个带普遍性的问题 ” 26 都能在不为人重视的情况下,坚信自己努 力让人理解 参看第 4 点的材料 27 在新观点的论述中都犯了一个错误:论述 过于简洁 刘维尔对为什么这位年轻数学家会被他的长辈们拒绝,以及他本人的努力怎样使伽罗瓦重新受到注意做了反思: 过分地追求简洁是导致这一缺憾的原因人们在处理像纯粹代数这样抽象和神秘的事物时,应该首先尽力避免这样做事实上,当你试图引寻读者远离习以为常的思路进入较为困惑的领域时,清晰性是绝对必需的,就像笛卡儿说过的那样:“在讨论超前的问题时务必空前地清晰 ” “1824 年,他证明了五次或五次以上的代数方程没有一般的用根式
13、求解的公式该证明写进了“论代数方程证明一般五次方程的不可解性”的著名论文中,从而结束了一般代数方程求根式通解的企图他深知其结果的重要性,决定先以小册子形式自费出版它为了节省经费,他把小册子压缩到 6 页,叙述很简洁,以致许多学者难以读懂 “数学王子”高斯也不相信一个青年能用这么短的篇幅,解决连他本人都尚未解决的难题 ” 28 重视爱的人 “阿贝尔已自知将不久于人世,这时,他唯一牵挂的是他女友凯姆普的前途,为此,他写信给最亲近的朋友基尔豪(Kiel-hau),要求基尔豪在他死后娶凯姆普为妻尽管基尔豪与凯姆普以前从未觌面,为了让阿贝尔能死而瞑目,他们照他的遗愿做了临终的几天,凯姆普坚持只要自己一个
14、人照看阿贝尔,她要独占这最后的时刻 ” “1832 年 3 月 16 日伽罗瓦获释后不久,年轻气盛的伽罗瓦为了一个舞女,卷入了一场他所谓的“爱情与荣誉”的决斗伽罗瓦非常清楚对手的枪法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿 ” 29 他们都是近世代数的开创者 210 寿命很短,贡献很大 3 从我们的这两位数学家的遭遇中,我们可以得到的启示 31 关于生命、身体健康的思考 “从满怀希望到渐生疑虑终至完全失望,阿贝尔在巴黎空等了将近一年一天,他感到身体很不舒畅,经医生检查,诊断为肺病,尽管他顽强地不相信,但实情是他确已心力交瘁了阿贝尔
15、只好拖着病弱的身体,怀着一颗饱尝冷遇而孤寂的心告别巴黎回国 ” “1832 年 3 月 16 日伽罗瓦获释后不久,年轻气盛的伽罗瓦为了一个舞女,卷入了一场他所谓的爱情与荣誉的决斗伽罗瓦非常清楚对手的枪法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿 ” 从这两段话,我们可以关于生命的一点思考: 珍惜生命,关爱自己工作固然重要,但是身体健康也很重要阿贝尔因为工作而“心力交瘁” ,弄得身体“病弱” ,我认为这是不对的身体是自己的,工作再忙也要好好照顾自己!而伽罗瓦“为了一个舞女” ,即使知道“自己难以摆脱死亡的命运”还是“卷入了一场他所谓的爱情与荣誉的决斗” 我不知道他是怎样看待生命的?失去了生命,又谈何爱情呢?失去了一份爱,我们有没有必要为此不要了自己的生命? 32 多读书,尤其是读大师的著作 从阿贝尔与伽罗瓦的经历中,我们可以看到他们都读了很多书,尤其是数学大师的著作所以我想,一个人都是想在某领域上取得成功必须看很多该领域的书,学习很多该领域的东西,尤其是读该领域大师的著作 33 坚定自己的信念,相信自己的能力 从阿贝尔与伽罗瓦的经历中,我们可以看到他们的观点开始时都不为人理解,但是他们都坚定自己的信念,相