外文翻译:通过BIM改变业主、设计师、承包商的角色.doc

上传人:文初 文档编号:2103438 上传时间:2019-04-25 格式:DOC 页数:13 大小:71.50KB
下载 相关 举报
外文翻译:通过BIM改变业主、设计师、承包商的角色.doc_第1页
第1页 / 共13页
外文翻译:通过BIM改变业主、设计师、承包商的角色.doc_第2页
第2页 / 共13页
外文翻译:通过BIM改变业主、设计师、承包商的角色.doc_第3页
第3页 / 共13页
外文翻译:通过BIM改变业主、设计师、承包商的角色.doc_第4页
第4页 / 共13页
外文翻译:通过BIM改变业主、设计师、承包商的角色.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、1毕业设计(论文)外文翻译通过 BIM改变业主、设计师、承包商的角色Rizal Sebastian,荷兰建筑环境与地球科学研究院,代尔夫特省,荷兰1.通过BIM应用改变角色BIM包括ICT框架和可以支持基于生命周期设计的的方法的综合协作的工具。BIM是一个数字表示的物理和功能特性的设施。这样,它作为一个为形成一个可信赖的生命周期从开始向前的决策基础服务的共享知识资源(国家建筑科学研究院NIBS,2007)。BIM促进不同时间和地点的独立协同工作。一个BIM的基本前提是在BIM系统中把不同股东在不同生命周期阶段插入、提取、升级或修改信息来支持和反映利益相关者的角色。BIM的最终形式,作为一个共享

2、的数字表示建立在具有互用性的开放标准,可以成为从设计团队向承包商和分包商,然后向客户端的虚拟的信息模型(Sebastian et al. , 2009)。BIM不同于之前所知的计算机辅助设计(CAD)。BIM会比生成数字图纸(2D或3D)的应用程序更进一步。BIM是一个综合模型,其中所有过程和产品信息都结合在一起存储、阐述,并交互式地分发到所有相关的项目参与者。作为一个涉及所有成员贯穿整个项目生命周期的主要模型,BIM随着项目的发展而开发。使用BIM,被提议的设计方案将被评估是否符合顾客的要求是否满足预期的建筑设计效果。BIM的功能支持设计过程向多维延伸,包括:三维可视化和细节,冲突检测、材料

3、时间表,计划、成本估计,生产和物流信息,和竣工文件。在施工过程中,BIM会支持之间的通信建设网站,工厂和办公室的设计这是至关重要的一个有效的和高效的预制和装配过程以及防止或解决问题相关的不可预见的错误或修改。当该建筑在使用中,可以使用BIM结合智能建筑系统提供和维护大楼的最新信息性能,包括生命周期成本。为在AEC/FM工业中合作运用BIM的更高效的信息交换中2发挥全部潜能,高质量的开放国际标准和这些标准的高质量的安装使用必须被替换。IFC开放标准是普遍认为是高质量的,是被广泛实现的在软件。不幸的是,这个认证程序允许低质量的的实现进行身份认证,并且本质上呈现它是在IFC实际使用中没用的身份认证。

4、IFC兼容BIM实际上是用更少的人工为建筑师和承包商起草,为工程师显示为相同的作用。最近的一项调查显示,CAD仍然是用于设计工作的主要技术形(约占60%),而此时BIM被约20%的设计师和约10%的工程师和承包商使用(Kiviniemiet al. , 2008)。应用程序支持一个最优的BIM交叉学科和交叉阶段合作,在项目参与者角色和关系上打开了一个新的维度。几个最相关的问题是:新角色的模型管理员;访问权和知识产权的协议(IPR);根据合同类型的责任和付款安排根据的类型和相关的集中采购;开放国际标准的使用。协同工作使用BIM要求建立一个拥有ICT以及施工工艺技术的新的专家的角色的模型管理员 (

5、InPro,2009)。该模型管理员处理系统,以及项目人员。他为BIM功能提和维护供技术解决方案,管理信息流,提高利益相关者的ICT技能。模型管理员并不能决定在设计和工程的解决方案和组织程序,但他的角色在整个链中的决策的重点是:BIM的发展,模型的结构和细节水平的定义,相关BIM工具的调度,例如,模型检查,合并,和冲突检测;分摊协作方法,特别是决策和通信协议、任务规划、和风险管理;以及信息管理方面,依据数据流和数据储存、鉴定沟通的错误,和决策或过程(重新)跟踪。对于法律和组织问题,一个实际的问题是:“在什么情况下知识产权(IPR)协同工作使用BIM不同于知识产权在传统的团队合作。就结合作品而言

6、,知识产权每个元素都依附于它的创造者。尽管看起来是一个完全集成的设计、BIM实际却是由一个组合的作品/元素;例如: ,是由建筑师完成建筑物的轮廓设计, 由电气承包商设计电机系统,等等。因此,一旦BIM结合起来工作,知识产权的使用将类似于原来的传统团队合作。使用BIM作者注册功能实际上可能会使它更容易追踪的知识产权(Chao-Duivis,2009)。怎样用BIM协同工作,影响合同的关系?一方面,协同合作使用BIM不必要改变在合同中的责任位置,也不需要承担联合合同的义务。BIM附件的一般原则证实:“这并不需要招致或需要一个合同关系的重新构建或转换项目参与者之间的风险除了特别要求的协议附录和其附件

7、” (ConsensusDOCS, 2008)另一方面,改变条款的付款方案是可以预见的。写作过程使用BIM将导致活动从早期设计阶段转变。很多,如果不是全部很多,活动详细的工程和规范阶段会进行早期阶段。这意味着设计阶段的重要支付,可能占到40%设计的成本,却不能再指望。因为建造工作同设计工作是同时的,一个新的付款的比例在早3期设计阶段是必要的(Chao-Duivis, 2009)。2.回顾运用BIM的正在进行的亿元建设项目在荷兰,在医院建设项目中不断变化的角色是策略一部分,它旨在达成一种可持续的真正的财产来回应改变的医疗保健政策。参考之前的文献和研究,影响该换角色成功的主要因素可以归为以下几点:

8、一个综合采购方法的实现和一个持续合作的过程的生命周期设计方法;BIM结构和知识产权的协议;和集成的角色模型管理员。前面的部分已经讨论了如何有效解决这些因素的概念性观点。当前部分观察两个实际的项目和比较实际的实践与分别概念视图。在案例研究中被观察到的问题是:选中的采购方法和在这个方法中的相关角色;生命周期设计方法的实现;BIM应用于项目中的类型、结构和功能在数据共享的开放性和传输模型和BIM在将来的使用;以及角色和模型管理者的任务。在圣内梅亨大学医学院(简称为UMC)和Maxima医学中心(简称为MMC)可以观察到试点医院建设项目使用BIM。在UMC,奈美亨市的牙科医院的新建项目一直致力于成为应

9、用BIM的典范。在MMC,BIM是用于为Veldhoven的母婴中心和医学模拟中心设计新的建筑。第一个案例为一个在圣内梅亨大学医学中心(UMC)的案例。UMC不仅仅是一个医院,它及医疗服务、教育和研究于一体。有8500名以上的在职员工和3000名以上的学生在这里工作。作为一项创新性的地产策略;UMC考虑运用BIM于建设项目。牙科学院的新发展和周围的建筑物在奈梅亨Kapittelweg已被选中作为一个试点项目收集实用知识和与BIM协作流程支持的经验。通过在UMC建筑项目使用BIM的技术的目的主要归纳如下:使用3D可视化效果来加强建设者之间的沟通与合作,和用户参与设计;促进信息的集合和交换以达到与

10、图纸和合同文件原则与实施阶段的一致性;结合建筑设计和结构分析、能量分析,成本评估和计划;交互设计解决方案和评估项目的要求及规格;通过设计中的冲突检测减少重新设计/再造成本;以及,通过登记医疗设备和器械、固定和可移动的家具、产品、输出规范和操作数据来加 强设施管理。第二个案例是Maxima医疗中心的项目。Diaconessenhuis在埃因霍温和圣Veldhoven Joseph医院的合并形成了大型医院MMC。每年,3400员工为MMC的访客和病人提供医疗服务。医院在Veldhoven大规模的扩建工程是医院房地产策略的一部分。一个医疗模拟中心4和母婴医疗中心是这个扩建项目中最重要的新设施。设计使

11、用了3D造型与几个BIM功能。这个结果来自于两个案例和如下的分析。UMC和MMC都选择了一种传统的采购方式,即客户直接与建筑师、结构工程师和设备、电气、管道顾问等(MEP)设计团队订立合同。一旦设计和详细的规范都已完成,选择一个承包商将是一个投标过程。尽管的选择传统的方法,但是已经进行了很多尝试仔细和更有效的多学科协作。UMC专注于在设计开始前的与建筑师、结构师和MEP顾问的相关的长期准备阶段。这个准备阶段的目的是创造一个共同的愿景以最佳的方式进行合作的使用BIM作为一个ICT支持。这些准备阶段的结果是:一份定义项目共同目的的文件和合作工作过程以及一份承诺建设参与者合作的半正式的协议。除了UM

12、C、MMC选定的建筑公司的内部工程部门。因此,发生在建筑师和结构师之间的合作可以在一家公司用同样的应用软件。对于生命周期设计的方法,主要关注了生命周期成本、维护的需求,和设施管理。使用BIM,两家公司都打算通过生命周期期间在这些方面获得更好的洞察力。生命周期的可持续性标准都包含在设计团队的任务中。多学科的设计师和工程师被要求更紧密地合作,并且与最终用户互动,以解决生命周期的需求。然而,保证项目参与者致力于协调合作来创造持续的设计成果以满足生命周期的预期成果是很困难的。这些工作人员通过传统承包采购方法订立合同。他们的任务是具体的,他们的参与在一个特定项目阶段中是短时期的,他们的职责和责任都是有限

13、的,而没有切实的激励集成的协作。从目前的两个项目的进展,可以观察到的类型和BIM结构严重依赖对BIM软件应用程序的选择。Revit建筑和结构选择Revit Autodesk的论证的基础上的在国际上得到了广泛的应用,这是兼容与AutoCAD,一种广泛已知产品相同的软件制造商。与AutoCAD的兼容性是一个MMC的重要考虑,因为现存图纸基本上都是用该款软件制作的。因为这些二维图纸将被BIM软件用作生成三维模型的基础。用Revit Architecture生成的建筑模型和结构模型将被直接连接。如果一个建筑模型改变,一个信息将被传送至结构工程师。他可以调整结构模型来适应或是提出一个变更来回应建筑师,以

14、保证结构模型总是与建筑模型相一致。尽管设计团队试着同意使用相同的软件应用程序,但MEP顾问仍不能够使用Revit;因此,和Revit之间转换模型仍然是必需的。这种“封闭方法”的另一个弱点是,它依赖使用相同的应用软件,在当项目更加进步的建设阶段的时候将会出现。如果承包商使用另一个软件应用程序,大量的额外工作需要让模型在设计阶段和构建阶段兼容。因为传统的采购方式使用,这个问题可能出现在投标后,这就意味着不会有很多时间和资源来重建或重做模型。承包商的ICT系统和应用程序在投标前是未知的,因为还没有承包商进入这个5项目。特别注意医院建设项目是给定的发展对象库。因为大量的复杂的对象是典型的医院建筑(例如

15、安装、设备、操作的房间、特殊设施)因此,能否有效处理对象库决定了设计过程的效率。由于BIM的方法仍就依赖于专业应用软件而非开放资源,可访问性、和扩展的可能性对象库可能相当有限。3.结论在改变房地产策略在医疗保健行业和更改角色在医院建设项目过程中,整合协作和BIM是非常需要的。基于文献分析,先前的调查和案例研究,五个综合协作使用BIM成功因素可以定义为“POWER”,包含:产品信息共享(P)组织角色协调(O)工作过程合作(W)团队工作环境(E)参考数据整合(R)对于怎样通过运用BIM合作过程改换客户、建筑师、工程师、承包商的角色发挥合作能量这方面有许多研究。然而,合作过程管理和BIM作为ICT的

16、支持在真正的实践中仍然是次优的。主要结果从在荷兰进行的案例研究可以得出如下。相反,为追求认证一个生命周期策略来管理医疗房地产是有效的,传统采购方法始终大量应用于医院建筑建设。尽管做了许多尝试来意识到一个综合合作,但是合同的限制使建设方在传统采购方式中阻碍了基于报酬体系的最佳实施效果(一个系统可能激发项目参与者要持续不断地评估他们的生命周期设计,工程,和建设解决方案)。BIM对ICT的决定往往不充分建立在商业和房地产策略的医疗保健机构上。在当前形式下,取决于一个特定应用软件的“封闭方法”仍然在使用。因此,大多数时候是需要定义的结构的对象和数据建模的启动项目变更的时候, 随着新员工用不同的ICT系

17、统的工作模型,必须严格执行在后面的阶段。医疗保障部分作为一个合适的案例,但就BIM开发而言这不是一个孤立的案例。用BIM支持协同合作的知识能够普遍应用与更广泛的建筑行业。BIM和协作流程在建设项目中不能被标准化。BIM不是一个现成的解决方案;它必须为每个客户量身定制的项目。协作框架,造型方法,结构的细节层次模型,支持工具不得不依照项目的复杂性和建设人员的目标与其保持一致。6Changing roles of the clients,architects and contractors through BIMRizal SebastianTNO Built Environment and Geo

18、sciences, Delft, The Netherlands1. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics o

19、f a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A

20、basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded o

21、n open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client (Sebastian et al., 2009).7BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an applica

22、tion to generate digital (2D or 3D) drawings (Bratton, 2009). BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project life

23、cycle, BIM develops and evolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the clients requirements and expected building performance. The functionalities of BIM to support the design process extend to multidimensional (nD), including:

24、 three-dimensional visualisation and detailing, clash detection, material schedule, planning, cost estimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office wh

25、ich is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-d

26、ate information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standard

27、s must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with

28、IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 2

29、0 percent of projects for architects and in around 10 per cent of projects for engineers and contractors (Kiviniemi et al., 2008).The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building ac

30、tors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and 8Intellectual Property Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international

31、standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM func

32、tionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:the development of BIM, the defini

33、tion of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management; and the man

34、agement of information, in terms of data flow and storage, identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working usi

35、ng BIM differ from the IPR in a traditional teamwork?”. In terms of combined work, the IPR of each element is attached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is c

36、reated by the architect, the design for the electrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of

37、 the IPR(Chao-Duivis, 2009).How does collaborative working, using BIM, effect the contractual relationship? On the one hand, collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM Add

38、endum confirms: This does not effectuate or require a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum 9and its Attachments (ConsensusDOCS, 2008). On the other hand, changes in term

39、s of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment fo

40、r the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary(Chao-Duivis, 2009).2. Review of ongoing hospital building project

41、s using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the

42、 changing roles can be concluded as: the implementation of an integrated procurement method and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sect

43、ions have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are:the selected procurement me

44、thod and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; andthe roles and t

45、asks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentist

46、ry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St 10Radboud. UMC is more than just a ho

47、spital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty of Dentistry and the surrounding buildings

48、on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows:using 3D visualisation to en

49、hance the coordination and communication among the building actors, and the user participation in design;facilitating optimal information accessibility and exchange for a highconsistency of the drawings and documents across disciplines and phases;integrating the architectural design with structural analysis, energy analysis, cost estimation, and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management of the facility throug

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。