1、函数定义域的类型及求法第 1 页(共 3 页)函数定义域的类型及求法一、已知解析式型(所有同学一定要会的)二、含参问题(很重要)三、抽象函数(复合函数)的定义域1 已知 的定义域,求 的定义域()fx()fgx其解法是:若 的定义域为 ,则在 中, ,从中解得 的取值范ab ()fgx()agxb x围即为 的定义域()fgx函数定义域的类型及求法第 2 页(共 3 页)例 1 已知函数 的定义域为 ,求 的定义域()fx15,(35)fx分析:该函数是由 和 构成的复合函数,其中 是自变量, 是中间变量,由于3u()fuxu与 是同一个函数,因此这里是已知 ,即 ,求 的取值范围()fxfu
2、 u 135 x解: 的定义域为 , , ()x1535x 40x 故函数 的定义域为 3)f 40,2、已知 的定义域,求 的定义域(fgx()fx其解法是:若 的定义域为 ,则由 确定的 的范围即为 的)mn xn ()gx()fx定义域例 2 已知函数 的定义域为 ,求函数 的定义域2()fx03,()f分析:令 ,则 ,u2()fxfu由于 与 是同一函数,因此 的取值范围即为 的定义域()ffx ()fx解:由 ,得 03 215x 令 ,则 , 2ux()(ffu15 故 的定义域为 ()f5,3,已知 的定义域,求 的定义域gx()fhx其解法是:若 的定义域为 ,则由 确定的
3、的取值范围即为()fmn xn ()gx的取值范围,由 的取值范围即可求出 的定义域 的取值范围。()hxhx()f例 2 已知函数 的定义域为 ,求 的定义域(1)f15,35x分析:令 ,则 ,,3uxt()(,)(fxfuft表示的是同一函数,故 u 的取值范围与 t 相同。(),ft解: 的定义域为 ,即 。x15,5x 016x 06 3函数定义域的类型及求法第 3 页(共 3 页)513x 故函数 的定义域为 ()f513,4、运算型的复合函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,然后再求交集例 若 的定义域为 ,求 的定义域()fx35
4、,()(25)xffx解:由 的定义域为 ,则 必有 解得 f,3, 40x 所以函数 的定义域为 ()x40,四、实际问题型(这个就不讲了哈)求函数定义域要注意的问题:1 当解析式为整式时,x 取任何实数。 (如 y=2x+1,y=x2+x-1 的定义域为 R)2 当解析式为分式时,x 取分母不为零的实数。(如 y= 的定义域为x|x -1)1x3 当解析式为偶次根式时,x 取被开方数为非负数的实数。(如 或 的定义域为x|x-1)1yx41yx4 当解析式为复合表达式时,首先逐个列出不等式,求出各部分的允许取值范围,再求其公共部分。见例 15 当解析式涉及到实际应用问题时,视具体应用问题而定。6、对数函数的真数要大于零,底数要大于零,且不等于 1