1、小数乘法重难点突破一、理解小数乘整数的算理,掌握小数乘整数的一般方法突破建议:1充分利用主题图展示的数学信息(风筝单价及要解决的问题),为学生理解算理提供感性支撑。教学中可以放手让学生利用已有的知识经验独立解决“买 3 个蝴蝶风筝多少钱”的问题,学生解答后,从中选出一种较为简单的方法(如 35 角3)进行重点分析、说理,引导学生用简洁的语言进行总结和概括:先把 3.5 元转化为 35 角,再计算 35 角3,最后将结果 105 角转化为 10.5 元。从而通过“元、角”这些具体量的进率关系,初步为算理的理解提供感性支撑,为后面例 2 的教学做好铺垫。2引导学生运用“转化”的思想方法,通过旧知迁
2、移,理解和掌握新知。要注意引导学生紧紧抓住例 1 中的计算经验,特别是“将 3.5 元转化为 35 角”的经验来学习例 2。放手让学生应用已有的整数乘法经验自主计算“0.725”,列出竖式,并尝试对过程做出合理的解释,有效地突破难点。3及时引导学生梳理和总结小数乘整数的竖式计算要点。在学生理解上述算理的基础上,重点引导学生归纳用竖式计算的要点:按整数乘法的规则进行计算;处理好积中小数点位置的确定,因数中一共有几位小数,积中也应有几位小数;如果积的小数部分末尾有 0,应根据小数的基本性质去掉小数末尾的“0”。二、积的小数数位不够时如何确定小数点的位置突破建议:1在教学小数乘小数及相应的练习中,应
3、结合具体的计算实例组织学生观察、比较因数与积的小数位数,引导学生发现因数与积的小数位数之间的关系,为正确确定积的小数点的位置提供操作依据。2在教学例 4 时,可以先放手让学生按照一般方法计算,引出“乘得的积的小数位数不够,怎么点小数点?”的问题,教师再来引导学生去寻找解决问题的办法,让学生自己想到可以根据小数点移动引起小数大小的变化规律来解决问题,理解乘得的积的小数位数不够时,应该先在前面用 0 补足,再点小数点,让学生经历发现问题解决问题的学习过程,留下较为深刻的印象。3设计具有针对性的练习(不一定要完整的计算),让学生明确:一定要数清楚两个因数中小数的位数,弄清楚应补上几个 0;确定积的小
4、数点位置时,应先点上小数点,然后再把小数末尾的 0 去掉。三、理解“倍”可以是小数,能解决求一个数的小数倍的实际问题,掌握计算方法突破建议:1激活已有经验,帮助学生扩充“倍”的认识。学生在第一学段已经对“倍”有了初步认识,对两个数量之间“倍”的关系并不陌生,知道求一个数的几倍是多少用乘法计算。在本课教学时,教师应帮助学生激活已有的旧知,让学生先解决整数倍的数学问题,并说一说列式的理由,以利于学生在分析、解决“小数倍”的问题时,能从对整数倍的认识扩充到对“小数倍”的认识。2借助具体事例,引导学生理解小数倍的含义。在教学例 5 时,可以借助生动的情境,让学生用自己的方式读题,再用自己的话表述题意。
5、在表述“鸵鸟的最高速度是非洲野狗的 1.3 倍”时,应尽可能给学生创设表述的空间,让学生充分表述自己的理解,着重是对“1.3 倍”含义的理解,从具体事件中领会“倍”不仅可以是整数,也可以是小数,有时用小数倍表示两个数量之间的关系更为直观。四、理解求积的近似数往往是“实际应用”的需要突破建议:1在教学“积的近似数”时,可以明确揭示求“积的近似数”的背景与一般方法:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。2在例题教学中,可借助教材创设的情境,从例题给出的信息“人的嗅觉细胞约有 0.049 亿个”和要解决的问题“狗
6、约有多少亿个嗅觉细胞?”使学生认识到,生活实际中有些小数我们既无可能、又无必要知道它们的准确值,只要知道它们的近似数就可以了,使学生感受到求积的近似数是“实际应用”的需要。3选择、设计一些与求积的近似数有关的实际问题,让学生在解决问题的过程中辨析、体会。如:教材第 13 页第 3 题求“这台计算机有多重?”为什么要“得数保留整数”?又如:教材第 11 页“做一做”第 2 题求“买 2.5 kg 应付多少钱?”为什么没有明确提出求近似数的要求,但也要自觉地“得数保留两位小数”?使学生在解决问题的过程中,体会到求积的近似数不是随意的要求,而确实是“实际应用”的需要。五、应用乘法运算定律进行小数的简
7、便计算突破建议:1在教学将整数乘法运算定律推广到小数时,教师要通过具体的例子引导学生亲身经历“推广”的过程,在“推广”的过程中理解整数乘法运算定律对于小数乘法也适用,使学生明确,现在乘法运算定律中数的适用范围不仅包括整数,也包括小数。2在教学应用乘法运算定律进行小数的简便计算时,教师要重视培养学生思维的逻辑性,着重引导学生交流简便计算的思维顺序,根据算式的结构和数据的特点怎样算比较简便?第一步应该怎样将算式变换?应用的是哪一条运算定律?第二步又该怎样做?3应用乘法分配律进行简便计算是学生容易出错的地方,教师要注意分析学生出错的原因,加强就题说理练习。在乘法分配律的应用中,既有乘法分配律的正向应
8、用,也有乘法分配律的逆向应用。因此,要适当进行乘法分配律算式结构的正向和逆向的变换训练,提高学生应用乘法分配律解决问题的能力。六、根据实际问题和数据选择适当的估算策略突破建议:1关注估算思路,注重方法指导。在教学过程中,引导学生完整地叙述自己的估算思路,教师组织学生及时反思“这样估算行吗”“这样估算有什么好处”“有什么需要改进的地方”等问题,及时有效地对学生的估算思路进行指导。2加强对比沟通,体会策略多样。在教学过程中,由于学生生活经验不同,会产生不同的估算方法,教师要主动对典型估算方法进行展示,引导学生体会估算方法的多样性。与此同时,还需要加强不同估算方法之间的对比沟通,如“这两种估算方法的
9、相同点和不同点是什么”,从而让学生体会估算的本质就是“近似计算”,根据具体数据和实际问题选择不同的处理方法,就会产生不同的估算策略。七、引导学生对分段计费问题的规律进行探寻1要重视引导学生理解题意,尤其是对“收费标准”的理解,因为它直接关系到如何根据里程确定怎样分段。教学中,教师可以设计如下问题:“3 km 以内 7 元”是什么意思?从什么时候开始按每千米 1.5 元收费?假如行驶了 3.1 km,应付车费多少元?行驶 3.1 km 和行驶 4 km,应付的车费同样多吗?为什么?通过这些理解性的问题帮助学生明确收费标准。2在完成了例题的“分析与解答”后,教师可沿用例题情境进行适当的变式练习,如
10、:如果行驶的里程是 8.4 km,你们还能用刚才的方法计算出车费吗?如果行驶的里程是 9.8 km 呢?让学生通过算式的对比,发现“分段计费”的方法都是用 7 元加后段里程车费,用“先假设再调整”的方法都是用假设车费再加上 2.5 元。在学生发现规律后,再来引导学生进一步探索,分析其中的原因。3在例题的“回顾与反思”中,教师不仅要让学生完成教材上的出租车价格表,还应引导学生观察表中的数据,探索其中的规律。教师也可以用图象来表示行驶里程与出租车费之间的关系,让学生直观感受分段计费的特点和规律。位置重难点突破一、在具体情境中用数对确定物体的位置突破建议:1、充分利用情境,不要急于抽象。教学时,教师
11、应该充分利用好教材中呈现的各种具体情境图,引导学生探究(在平面中)确定一个物体的位置的方法。第一课时在熟悉的教室座位情境中,引导学生明确“行、列的含义”“确定行、列的一般规则”“用数对表示某个同学的位置”,体会到唯一性,一步一步,层层推进,为第二课时的抽象打下基础。本课时还要完成练习五中的第 1 题至第 5 题,每道题都是在生活情境中巩固应用数对。教师要变化形式,让学生在丰富的生活情境中巩固数对。2、结合具体情境,亲历建模过程。在本节课中,要从真实的课堂情境引入,真实地展开学生学习探究的过程。教学时可分三步实施:第一步,结合具体的情境,说一说张亮同学的位置。由于个人生活经验不同,学生的表示方法
12、会各不相同。第二步,将学生的生活经验提升、抽象,揭示行、列的含义以及确定行、列的一般规则,引出数学表示方法“数对”,感受到“数对”的简洁性和准确性。第三步,能用“数对”表示示意图上或班级同学的位置,以及根据所给的“数对”确定现实中物体的位置。从学生的经验中逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律,有助于学生理解数对在确定位置中的作用。在经历“数对”这一概念的建模过程中,要让学生展开“数学化”的探索和数学思考,而行、列的含义以及确定行、列的一般规则等则需要教师揭示。在建立数学概念的同时,让学生感受数的顺序及一一对应(数对与物体位置的对应关系)。二、在具体情境中
13、理解要用两个数表示物体在平面上的位置突破建议:1、复习旧知,做好衔接。例 1 是学习用数对(两个数)来确定一个物体在平面中的位置。在此之前,学生已经积累了一些关于描述物体位置的学习经验和生活经验:在一年级的位置单元,学生认识上、下、前、后、左、右这几个方位,并能描述简单的位置关系;在三年级下册的位置和方向(一)单元,学生会辨认八个方向等。所以教学时可设计复习铺垫,明确“确定一个物体在直线上的位置只需要一个数”,那“确定一个物体在平面中的位置”需要几个数呢?由“线”推广到“面”,从而为引出数对做好充分的铺垫。2、引发矛盾,逐渐统一。虽然数对的表示方式和含义都是有着统一规定的,但教师也不可让学生死
14、背硬记,要耐心给足时间,创设三次矛盾冲突,让学生一次次体会到“统一规则”的必要性,从而自然理解数对的规则和含义。将用生活经验描述位置上升为用数学方法确定位置,发展学生的应用意识和空间观念。(1)统一“行”“列”的含义。受生活中口语的影响,学生喜欢用“第几条第几个”“第几竖条第几个”“第几横排第几个”之类的语言描述位置,而规范的数学语言是“第几行第几列”“第几列第几行”。教师需要引导学生把“生活语言”统一成规范的“数学语言”。(2)统一“确定行、列的一般规则”。在生活中,人们可以依照自己的习惯去数“第几行”“第几列”,不论是从右起,还是从左起,都能表示出物体的位置。引导学生体会“行”“列”的方向
15、若没有规定会很混乱,从而产生统一“行、列规则”的需求。明确一般情况下,数“列”是从左往右数;数“行”是从下往上数。统一方向和规则,就会避免歧义。(3)统一“数的顺序”及一一对应(数对与物体位置的对应关系)。数对的第一个数表示“列”(其实就是直角坐标系中的横坐标),第二个数才表示“行”(其实就是直角坐标系中的纵坐标),也就是“先列后行”“先横后纵”。这与生活中的习惯说法“行列”又是一个冲突。此时需要统一数的顺序,建立数对与物体位置的一一对应,即唯一性。三、在方格图上用数对准确表示点的位置突破建议:1、通过迁移,逐步由具体到抽象。开课通过与例 1 的对比,使学生直观看到异同,相同的地方可以作为今天
16、学习的基础,不同的地方是今天对于位置知识点内涵的进一步探究,这样体现了新旧知识的衔接,学生很快找到运用旧知尝试解决新问题的方向,同时进一步理解数对与方格图上的点一一对应的关系。2、分层处理,掌握运用数对准确表示点的位置。针对各馆所的位置可以采取教师指导示范大象馆的位置,学生讨论具有特点的大门的位置,独立思考其他馆所的位置,这样层层递进、逐步放手的方式使学生逐步明确:怎样用数对表示?为什么这样表示?知其然更知其所以然。在大门位置的讨论中更明确了 0 既是列的起点,又是行的起点,渗透了原点的含义,构建直角坐标系的原型。四、发现同一行同一列等特殊数对的特征突破建议:1、结合主题图素材,从无意到有意。
17、教师可以结合主题图中各馆所的位置以及数对,引导学生观察数对中第一个数相同的,点的位置有什么特点;第二个数相同的点的位置有什么特点。这样学生由无意地观察到有意地思考,从而抽象概括出特殊数对的特征,符合学生的认知规律。2、通过不确定的数对,由具体描述到抽象概括。由不确定的(,4)(4,)数对,思考其对应点会在哪里?学生通过前面的具体描述抽象概括出点的位置,实际上也就是发现同一列、同一行等特殊数对的特征。也明确了确定一个点的位置至少需要两个数据,这样更加理解了用数对确定平面上点的位置的方法。 小数除法重难点突破小数除法的计算方法以及如何正确灵活计算突破建议:1抓住新旧知识的连接点,在理解算理的基础上
18、,引导学生通过讨论总结小数除法的计算方法。本单元内容与旧知识联系十分紧密。小数除法的计算法则是以整数除法中“被除数和除数同时乘相同的数(0 除外),商不变”以及小数点位置移动规律等知识为基础来说明的。小数除法的试商方法、除的步骤和整数除法基本相同,不同的只是小数点的处理问题。因此,要注意复习和运用整数除法的有关知识,为新知识的学习奠定好基础。同小数乘法一样,教学中要让学生在理解算理的基础上,及时归纳、总结小数除法的计算方法,帮助学生形成良好的计算能力。2要注意突出重点,攻破难点。除数是整数的小数除法,要注意讲明商的小数点为什么要与被除数的小数点对齐。小数除以小数,要重点说明除数怎样转化为整数。
19、讲清了一般的计算原理,注意克服难点:小数点的处理问题。学生在计算中经常出现只去掉除数的小数点,而不把被除数的小数点相应地向右移动,或者把小数点的位置移错,使商的小数点常常处理错。为了帮助学生攻破难点,可适当安排有针对性的单项练习。如学完小数除法后,学生计算“0.630.6”的正确率较低,错误主要有两方面:第一,商的小数点位置不对。例题中没有单独安排“被除数比除数小数位数多”的类型,只是在“做一做”中以练习形式出现,而且,如果将被除数、除数的位数多少的三种情况安排在一节课内,对一些学生来说掌握起来可能有困难。第二,商中间的 0漏掉。商中间有 0 的除法仅在三年级“除数是一位数的除法”时出现过,而
20、四年级“除数是两位数的除法”受到计算步数的制约,避免计算的繁杂,没有将“除数是两位、商是三位”作为教学要求,因此,商中间有 0 的除法的学习基础是薄弱的。基于这两个原因,教学中,一方面需要关注要点,重视“除数的小数位数与被除数的小数位数不同”这一除法类型;另一方面,需要加强商中间有 0 的除法的铺垫与练习,以弥补薄弱,突破难点。3灵活选择、优化策略,发展思维。运算能力中,“根据计算的具体情况,自觉地判断、选择算法”是重要的维度。这一意识与能力的形成,是不断经历、不断反思、不断沉淀的结果。教学时,一方面,要善于挖掘内涵,捕捉教材例题、练习中关于能力培养的契机;另一方面,则需要精心设计有关选择策略
21、、发展思维的问题。首先,挖掘教材内涵,灵活选择算法。教材中有不少的练习,如果仅以计算出正确答案为主要目的,则大大减少了其“意识与能力培养”的价值。如第 37 页第 11 题中的“4228”“2.53.6”“19.83.3”“180.45”,这些题目除了学生根据法则正确列竖式计算之外,还应进一步思考:有更简洁的方法吗?可以引导学生将“4228”的被除数、除数同时除以 7,转化为“64”,则可以口算得出结论;其余几题也是如此,适当地运用转化代换,可以大大降低计算的繁杂程度。显然,这是培养学生计算灵活性的极好素材,教材题目要求中没有给出“怎样简便怎样算”的指向,也正可以真实地反映学生思维的灵活程度。
22、通过对不同学生不同方法的比较,凸显“灵活选择方法意识”的重要性。其次,开发设计练习,优化解题策略。除了很好地捕捉利用教材的题目之外,教师可以设计一些用多种计算方法、多种运算形式、多种解决策略来解决的练习,将口算、笔算、估算、简算相互融合,从而优化策略,发展学生的思维。可能性重难点突破一、体验事件发生的确定性和不确定性突破建议:1在教学中,教师应注意创设各种问题情境,充分调动学生的主动性和积极性,让学生进行独立思考,鼓励学生发表自己的意见,并与同伴交换自己的想法。如在教学例 1 时,教师可以利用主题图中“联欢会上抽签”的情境,激活学生已有经验,初步感知事件发生有时候不能预先知道结果,从而认识随机
23、事件。然后模拟抽签的场景,让学生参与由三张卡片逐渐到两张卡片、一张卡片抽签的过程,引导学生逐步分析:抽到什么节目是否确定,可能会抽到什么节目,学生在独立思考和同伴交流中充分感知并逐步体会事件发生的确定性和不确定性。2教师可以引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性。如通过“做一做”中摸棋子的游戏活动,学生围绕4 个问题(哪个盒子里肯定能摸出红棋子;哪个盒子不可能摸出绿棋子;哪个盒子里可能摸出绿棋子;如果从 2 号盒任意摸一个棋子,可能是什么颜色展开分析,让学生充分经历猜测、试验与交流的活动过程,进一步丰富学生对确定现象和不确定现象的体验。二、能够
24、列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的突破建议:1教师可以结合具体情境,通过活动体验,引导学生列出简单的随机现象中所有可能发生的结果。如在教学例 1 中,通过学生抽签活动,列举“抽到什么节目”这一随机现象的所有可能发生的结果,以及在“做一做”中,学生在探讨第四个问题“如果从 2 号盒任意摸一个棋子,可能是什么颜色”的活动中,学会列举简单的随机现象中所有可能发生的结果。2通过有趣的有层次的练习进一步感知事件发生可能性是有大小的。教师可以通过相关练习,让学生列出简单的随机现象中所有可能发生的结果,例如:说一说转动指针可能停止哪种颜色上?一个正方体,六个面上分别写着数字 1-
25、6。掷一掷,可能掷出哪些数字?三、能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性突破建议:1通过“生活中的数学”以及学生对生活中确定现象和不确定现象的判断和举例,使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。如:用相应的符号判断下列事件是否可能。(“一定”的打,“不可能”的打,“可能”的打。)三天后下雨。 ( )爸爸的年龄比儿子的年龄大。 ( )小明跑完 100 米只用了 2 秒。 ( )地球绕着太阳转。 ( )2通过涂色的活动,学生在动手操作中进进一步理解“一定”“可能”与“不可能”。如:按要求涂一涂。摸
26、出的一定是 。摸出的不可能是 。摸出的可能是 。四、体验事件发生可能性的大小与事物出现的数量有关突破建议:1在材料的选择运用上让学生体验事件发生可能性的大小与事物出现的数量有关。例如例 2 的教学,在教学材料的选择运用上,对教材灵活进行处理。为每个小组准备的盒子,里面装有红蓝棋子(4 红 1 蓝,5 红 1 蓝,6 红 1 蓝,7 红 1 蓝,7 红 2 蓝)虽然不一样,但是原理一样。而且事先学生不知道,在各组展示完试验结果后,才揭开谜底。遵循学生的心理特点,抓住问题的关键,引导学生体验事件发生可能性的大小与事物出现的数量有关。2在收集分析试验数据和归纳中,体验事件发生可能性的大小与事物出现的
27、数量有关。同样是例 2 的教学,在小组合作学习完成后,先引导学生对所在的小组试验数据进行分析归纳,人人都有切身体会,都亲身经历了知识的形成过程。在所有小组汇报展示完后,引导学生对所有小组的试验数据进行归纳分析,虽然每个小组的数据不一样,材料也不完全一样,但是综合归纳,都能让所有学生体验事件发生可能性的大小与事物出现的数量有关。五、体会随机现象的统计规律性,根据数据推测事件发生的可能性的大小突破建议:1通过对统计数据的分析,推测事件发生的可能性的大小。例如例 3 的教学,此部分内容的学习宜采取小组合作学习的方式,教学中可以分以下几步进行:首先,教师可以依照教材中的图示,事先在各小组的盒子里放进两
28、种颜色的球,让学生列出简单试验所有可能发生的结果。需要注意的是,通过例 2 的教学,学生已经能够借助试验列出简单试验所有可能发生的结果。这里,教师应引导学生根据盒子里球的颜色、种类列出这个简单试验所有可能发生的结果:既可能摸出红球,也可能摸出黄球。接着,组织学生仿照例 2 进行试验。在做试验前,教师首先要使学生明确试验的过程,“摸出一个球,记录下它的颜色,再放回去,重复 20 次”。还要使学生明确组内成员的分工,应有人负责摸出球,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法。而且还要向学生说明,在试验的过程中,应注意保证试验的随机性,如:每次摸球前应将盒中的球摇匀;摸
29、球时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。然后,教师可引导学生交流对随机现象的不确定性的体验。先让每个小组展示实验结果,再将全班各小组的试验结果进行汇总,并引导学生不只关注本小组的统计结果,还要分析所有小组的统计结果有什么共性。如提问“每一个小组的统计结果都一样吗?”“所有小组的统计结果有什么相同的地方?”,引导学生发现,虽然每次摸到球的结果不确定,但当大量重复试验时,试验结果就呈现了一种规律性,都是摸出黄球的次数比红球少。接着,教师再引导学生根据试验的统计结果进行推测“哪种颜色的球多”,如提问“为什么每个小组摸到的都是红球多黄球少?盒子里红球和黄球数量相等吗?”,使学生认识到,在这个摸球的随机试验中,每一个球被摸到的可能性是相等的,但摸到的红球与黄球的次数不等,那么说明盒子里的红球与黄球的数量是不一样的红球的数量多,摸出红球的可能性就大。最后再打开袋子看一看,验证自己的猜测,获得成功的体验。最后,我们还可以提出一个问题“再摸一次,摸出哪种颜色的球可能性大”,让学生根据试验的统计结果对下一次试验的结果进行推测。在学生进行推测后,教师可以再让学生实际摸摸看。学生很可能摸出红球,但也有可能摸出黄球。通过试验使学生认识到,虽然知道了摸出红球的数量多,摸出红球的可能性大,但在单次试验中并不能确定会摸出红球。进一步感受不确定现象的特点,