函数的表示方法18.4(1)(2).doc

上传人:ng****60 文档编号:2207743 上传时间:2019-05-02 格式:DOC 页数:7 大小:133.50KB
下载 相关 举报
函数的表示方法18.4(1)(2).doc_第1页
第1页 / 共7页
函数的表示方法18.4(1)(2).doc_第2页
第2页 / 共7页
函数的表示方法18.4(1)(2).doc_第3页
第3页 / 共7页
函数的表示方法18.4(1)(2).doc_第4页
第4页 / 共7页
函数的表示方法18.4(1)(2).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、18.4(1)函数的表示法【教学目标】学习内容 学习水平 知道 理解 掌握 应用函数的三种表示方法; 用函数的三种表示法表示函数; 知识与技能会根据三种表方法分析函数,解决实际问题。 过程与方法 经历学习函数的三种表示方法的过程,对比三种方法应用时的利弊,从而寻求合适的方法表示数学问题中的函数关系,解决数学问题。【教学重点与难点】学用函数的三种表示法表示函数;会根据三种表方法分析函数,解决实际问题。【复习回顾】请回忆:正比例函数解析式的一般形式及其定义域;反比例函数解析式的一般形式及其定义域。【新课学习】1、 _叫做解析法, 这种数学式子叫做_.例 1、把一块边长为 20 厘米的正方形铁皮,在

2、四角各截去边长为 x 厘米的小正方形,再按虚线折成一个无盖的长方体盒子。求这个盒子的容积 v 关于变量 x 的函数解析式以及函数定义域。总结:用函数法表示函数的优点是_ 缺点是_.练习:某校生物小组学生准备在校内一空地围一个长方形苗圃。苗圃的一边靠墙,墙可利用部分的最大长度为 40 米;苗圃的另一边与墙垂直,长为 30 米。试写出苗圃的面积 y(平方米)与靠墙一边的长 x(米) 的函数解析式及定义域。甲202、 观察:2005 年 10 月 17 日,我国“神六”载人飞船顺利返回地面。下面是飞船返回舱返回过程中的相关记录:时 间 3 时 45 分 4 时 13 分 4 时 19 分 4 时 2

3、0 分 4 时 23 分 4 时 32 分 4 时 33 分返回舱距地面的高度350 千米 100 千米 15 千米 10 千米 6 千米 1 千米 0降落情况 返回舱制动点火返回舱处于无动力飞回状态,高速进入黑障区引导伞引出减速伞减速伞打开返回舱抛掉防热大底指示灯指示即将着陆返回舱成功降落地面思考:本例用表格反映了_与_的函数关系?总结:_叫做列表法;用列表法表示函数的优点是_缺点是_.练习:一位同学在乘坐磁悬浮列车从龙阳路站到浦东国立机场途中,记录了列车运行速度的变化情况,如下表:时间 t(分) 0 1 1.5 2 3 4 5 5.5 6 7 8速度 v(千米 /时) 0 146 217

4、300 300 300 300 300 281 121 0根据表中提供的信息回答下列问题:(1 ) 在哪一段时间内列车的速度逐渐加快?(2 ) 在哪一段时间内列车是匀速行驶的?在这一段时间内列车走了多少路程?(3 ) 在哪一段时间内列车的速度逐渐减慢?3、 观察:根据研究,体内血乳酸浓度升高是运动后感觉疲劳的重要原因。运动员未运动时,体内血乳酸浓度水平通常在 40mg/L 以下;如果血乳酸浓度降到 50mg/L 以下,运动员就基本消除了疲劳。体育研究工作者根据数据,绘制了一幅图像,它反映了运动员进行高强度的运动后,体内血乳酸浓度随时间变化而变化的函数关系。如图所示。图中实线表示采用慢跑等活动方

5、式放松时血乳酸浓度的变化情况,虚线表示采用静坐方式休息时血乳酸浓度的变化情况,从图中可以看出_.总结:_叫做图像法;用图像法表示函数的优点是_缺点是_.例 2、A、B 两地相距 25 千米,甲于某日 12 时 30 分骑自行车从 A 地出发前往 B 地,乙也由于同日下午骑摩托车从 A 地出发前往 B 地, 图 1812 中的折线 PQR 和线段 MN 分别反映了甲和乙所行驶的路线 s 与该日下午的时间 t 的函数关系,根据图像提供的信息回答下列问题:12010080604020200150100500 t(min)血乳酸浓度(mg/L)Q甲乙5乙1201008060402020151050 下

6、午 t(时 n)s(千米)P MRN(1) 甲出发后几小时乙才出发?(2) 乙行驶多少分钟后追上甲?这时两人离 B 地还有多少千米?(3) 甲乙两人分别在下午几点到达 B 地?(4) 甲从下午 1 时到 2 时半的速度是每小时多少千米?(5) 乙的速度是每小时多少千米?【课堂小结】1、 表示函数常用的三种方法有_、_、_.2、 应用时各有什么利弊?【回家作业】练习册 18.4(1)18.4(2)函数的表示法【教学重难点】函数三种表示法的巩固与应用。【复习回顾】请回忆:函数有哪几种表示方法? 【新课学习】例 3、一个游泳池内有水 90 立方米,设排尽全池水的时间为 t(分), 每分钟的排水量为

7、x(立方米),规定排水时间至少 9 分钟,至多 15 分钟.试写出排水时间 t 关于每分钟排水量 x 的函数解析式,并指出函数的定义域.例 4、按照我国税法规定,个人所得税的缴付方法是:月收入不超过 1600 元,免缴个人所得税;超过 1600 元不超过 5000 元,超过部分需缴纳 5%的个人所得税;等等.例如下表:月收入(元) 1300 1600 1700 2000 2500 4500月缴付个人所得税(元)0 0 5 20 45 145试写出月收入在 1600 元到 5000 元之间的个人缴纳的所得税 y(元) 与月收入 x(元)的函数解析式;并求月收入为 3000 元的职工每月需缴纳的个

8、人所得税.(x 为精确到 0.01 的正数)例 5、为了预防” 流感”,某学校对教室采取 ”药熏” 消毒.已知该药燃烧时,室内每立方米的含药量 y(毫克) 与时间 x(分) 成正比例 ;药物燃烧结束后,y 与 x 成反比例;这两个变量之间的关系如图所示.根据图中所提供的信息,回答下列问题:(1) 药物燃烧了几分钟时,教室里含”药”量最大?每立方米含药量有多少毫克?(2) 写出药物燃烧时,y 关于 x 的函数解析式及定义域.(3) 写出在药物燃烧结束后,y 关于 x 的函数解析式及定义域 .练习:1、 (1)已知每千克苹果售价 2.40 元,设购买苹果 x 千克,需付款 y 元,试写出 y 关于

9、 x 的函数解析式;(2)采购员用 200 元去买苹果,设每千克苹果售价 x 元,可购买苹果 y 千克,试写出 y 关于 x的函数解析式.2、一支蜡烛长 20 厘米, 点燃后每小时燃烧 5 厘米.试判段在下列图像中 ,能大致表示这支蜡烛点燃后剩下的长度 h(厘米)与点燃的 t(时) 之间的函数关系的是哪一个图 .(A) (B) (C)3、近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例.已知 400 度的近视眼镜镜片的焦距为0.25 米, 请写出眼镜度数 y 关于镜片焦距 x 的函数解析式.2420161284630 x(分 )y(毫克/立方米)432120100t(时 )h(厘米)432120100t(时 )h(厘米)432120100t(时 )h(厘米)【课内小结】用解析法表示函数,如何求函数的定义域?【回家作业】练习册 18.4(2)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。