1、河南教考资源信息网 http:/ 版权所有侵权必究- 1 -济钢高中 2012 届高三 5 月份高考冲刺题理 科 数 学本试卷分第卷和第卷两部分,共 8 页,满分 150 分。考试用时 120 分钟。参考公式:柱体的体积公式: ,其中 表示柱体的底面积, 表示柱体的高.vshh圆柱的侧面积公式: ,其中 c 是圆柱的底面周长, 是圆柱的母线长.l l球的体积公式 V= , 其中 R 是球的半径.34球的表面积公式:S=4 ,其中 R 是球的半径.2用最小二乘法求线性回归方程系数公式 .12,niixybaybx如果事件 互斥,那么 .AB、 ()()PABP第 I 卷 (选择题 共 60 分)
2、一、选择题(本大题共 12 小题,每小题 5 分,满分 60 分在每小题给出的四个选项中,只有一项是符合题目要求的 )1设 , ,若 ,则 a 的取值范围是 ( 1|xA0|axBBA)A B C D)(, 1(, ),1)1(,2 是 ( )2sincoyxA最小正周期为 的偶函数 B最小正周期为 的奇函数2C最小正周期为 的偶函数 D最小正周期为 的奇函数3 下 列 结 论 错 误 的 是 ( )A 命 题 “若 , 则 ”与 命 题 “若 则 ”互 为 逆 否 命 题 ;pq,qpB 命 题 , 命题 则 为 真 ;:0,1xe2:10,xRpqC “若 则 ”的 逆命题为 真 命 题
3、;2ambaD 若 为假命题,则 、 均为假命题qppq4求曲线 与 所围成图形的面积,其中正确的是 ( )2yxA B 10()Sd 120()SxdC D2yy河南教考资源信息网 http:/ 版权所有侵权必究- 2 -5等比数列 首项与公比分别是复数 是虚数单位 的实部与虚部,则数列na2(i)的前 项的和为 ( )n10A B C D21200i26如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度 随时间 变ht化的可能图象是 ( )侧侧侧 侧侧侧侧侧侧O thhtOhtOO thA B C D7设 为三条不同的直线, 为一个平面,下列命题中正确的个数是 ( )nml
4、, 若 ,则 与 相交 l若 则, nlml若 | , | , ,则 ll若 | , , ,则 |lA1 B2 C3 D48 ,则 A、B、C 三点共线的充要),(, 211 RbaAbba 若是 不 共 线 的 向 量条件为 ( )A B C D1221 021 0129把函数 的图象向左平移 个单位,再将图像上所有点的)|,0)(sinxy 6横坐标伸长到原来的 2 倍(纵坐标不变)所得的图象解析式为 ,则 ( )xsinyA B 6, 32,C D21, 1,河南教考资源信息网 http:/ 版权所有侵权必究- 3 -10 是 的零点,若 ,则 的值满足 ( )axxf21log)(ax
5、0)(0xfA B 0f )(0fC D 的符号不确定)(xx11设 ,当 0 时, 恒成立,则实数fR,3 20)1()sin(mff的取值范围是 ( )mA (0,1) B C D),(),(),(12已知正六棱柱的 12 个顶点都在一个半径为 3 的球面上,当正六棱柱的体积最大(柱体体积=底面积 高)时,其高的值为 ( )A B C D 32323第卷(非选择题 共 90 分)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分把答案填在答题卡的相应位置13已知向量 和 的夹角为 , ,则 ab120|,|3abba14已知实数 的最小值为 yxzyx235, 则 目 标 函 数
6、满 足15在 中,若 ,则 外接圆半径 运用类ABCRtaBCbA,90A2bar比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为 ,则其外接球的半径cb,= 16如图,在正三角形 中, 分别为各边的中点, 分,DEF,GH别为 的中点,将 沿 折成正四面体,DEAFAB,,则四面体中异面直线 与 所成的角的余弦值为 PPG 河南教考资源信息网 http:/ 版权所有侵权必究- 4 -三、解答题(共 6 小题,74 分,须写出必要的解答过程)17 (本小题满分 12 分)ABC 中,a,b,c 分别是角 A,B ,C 的对边,向量 =(2sinB ,2-cos2B ) ,m, )124(si
7、nBmn()求角 B 的大小;()若 ,b=1,求 c 的值3a18 (本小题满分 12 分)某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审假设评审结果为“支持”或“ 不支持”的概率都是 .若某人获得两个“ 支持”,则12给予 10 万元的创业资助;若只获得一个“支持”,则给予 5 万元的资助;若未获得“支持”,则不予资助,令 表示该公司的资助总额()写出 的分布列;()求数学期望 E河南教考资源信息网 http:/ 版权所有侵权必究- 5 -19 (本小题满分 12 分)在各项均为负数的数列 中,已知点 在函数 的图像上,且na)(,*1Nnaxy322
8、785a()求证:数列 是等比数列,并求出其通项;n()若数列 的前 项和为 ,且 ,求 bnSnabnS河南教考资源信息网 http:/ 版权所有侵权必究- 6 -20 (本小题满分 12 分)如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE/CF, BCF= CEF= ,AD=90,EF=23()求证:AE/平面 DCF;()当 AB 的长为何值时,二面角 A-EF-C 的大小 为60河南教考资源信息网 http:/ 版权所有侵权必究- 7 -21 (本小题满分 12 分)已知椭圆 )0(1:21bayxC的离心率为 3,直线 l: y=x+2 与以原点为圆心、椭圆 C1 的
9、短半轴长为半径的圆 O 相切。()求椭圆 C1 的方程;()设椭圆 C1 的左焦点为 F1,右焦点为 F2,直线 l1 过点 F1,且垂直于椭圆的长轴,动直线 l2 垂直于 l1,垂足为点 P,线段 PF2 的垂直平分线交 l2 于点 M,求点 M 的轨迹 C2 的方程;()设 C2 与 x 轴交于点 Q,不同的两点 R、S 在 C2 上,且 满足 0RSQ,求|S的取值范围。22 (本小题满分 14 分)设函数 21()ln.fxaxb()当 时,求 的最大值;b)(f()令 , ( ) ,其图象上任意一点 处21()aFxfxb03x0(,)Pxy切线的斜率 恒成立,求实数 的取值范围;k
10、()当 , ,方程 有唯一实数解,求正数 的值0a1b2()mfxm河南教考资源信息网 http:/ 版权所有侵权必究- 8 -理科数学答案1.【答案】B 【分析】求出集合 ,结合数轴即可找到 的取值范围。Ba【解析】集合 , ,则只要 即可,即 的取值范围是 。(,)aA1(,1【考点】集合【点评】本题考查集合的关系,解题中虽然可以不画出数轴,但在头脑中要有数轴。2.【答案】D 【分析】对给出的三角函数式进行变换,然后根据三角函数的性质进行判断。【解析】 ,所以函数 是最2(sinco)1sincosi2yxxx 2(sinco)1yx小正周期为 的奇函数。【考点】基本初等函数。【点评】本题
11、考查三角函数的性质,但要借助三角恒等变换,在大多数三角函数性质的试题中往往要以三角恒等变换为工具,把三角函数式化为一个角的一个三角函数,再根据基本的三角函数的性质对所给的三角函数的性质作出结论。3.【 答 案 】 C【 分 析 】 根 据 命 题 的 知 识 逐 个 进 行 判 断 即 可 。【 解 析 】 根 据 四 种 命 题 的 构 成 规 律 , 选 项 A 中 的 结 论 是 正 确 的 ; 选 项 B 中 的 命 题 是 真p命 题 , 命 题 是 假 命 题 , 故 为 真 命 题 , 选 项 B 中 的 结 论 正 确 ; 当 时 ,qpq0m, 故 选 项 C 中 的 结 论
12、 不 正 确 ; 选 项 D 中 的 结 论 正 确 。2abm【 考 点 】 常 用 逻 辑 用 语【 点 评 】 本 题 属 于 以 考 查 知 识 点 为 主 的 试 题 , 要 求 考 生 对 常 用 逻 辑 用 语 的 基 础 知 识 有 较 为 全 面 的掌 握 。4.【答案】B 【分析】根据定积分的几何意义,确定积分限和被积函数。【解析】两函数图象的交点坐标是 ,故积分上限是 ,下限是 ,由于在 上, ,(0,)110,12x故求曲线 与 所围成图形的面 。2yx20()Sxd【考点】导数及其应用。【点评】本题考查定积分的几何意义,对定积分高考可能考查的主要问题是:利用微积分基本
13、定理计算定积分和使用定积分的几何意义求曲边形的面积。5 【答案】A【分析】根据复数实部和虚部的概念求出这个等比数列的首项和公比,按照等比数列的求和公式进行计算。【解析】该等比数列的首项是 ,公比是 ,故其前 项之和是 。2102【考点】数列、复数【点评】本题把等比数列和复数交汇,注意等比数列的求和公式是分公比等于 和不等于 两种情况,在解1题中如果公比是一个不确定的字母要注意分情况解决。6 【答案】B 【分析】可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断。【解析】容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象的切线上就是其切线的斜
14、率逐渐减少,正确选项 B。【考点】空间几何体、导数及其应用。【点评】本题在空间几何体三视图和函数的变化率交汇处命制,重点是对函数变化率的考查,这是一种回归基本概念的考查方式,值得注意。7.【答案】C 【分析】根据空间线面位置关系的有关定理逐个进行判断。【解析】由于直线与平面垂直是相交的特殊情况,故命题正确;由于不能确定直线 的相交,不符合,mn线面垂直的判定定理,命题不正确;根据平行线的传递性。 ,故 时,一定有 。lnl【考点】空间点、线、面的位置关系。【点评】这类试题一般称之为空间点线面位置关系的组合判断题,主要考查对空间点、线、面位置关系的概念、定理,考查特例反驳和结论证明,特别是把空间
15、平行关系和垂直关系的相关定理中抽掉一些条件的命题,其目的是考查考生对这些定理掌握的熟练程度。8.【答案】D 【分析】由于向量 由公共起点,因此三点 共线只要 共线即可,根据向量共线的,ACB,ABC,AB河南教考资源信息网 http:/ 版权所有侵权必究- 9 -条件即存在实数 使得 ,然后根据平面向量基本定理得到两个方程,消掉 即得结论。ACB 【解析】只要要 共线即可,根据向量共线的条件即存在实数 使得 ,即, ACB,由于 不共线,根据平面向量基本定理得 且 ,消掉 得21()aba,b12。1【考点】平面向量。【点评】向量的共线定理和平面向量基本定理是平面向量中的两个带有根本意义的定理
16、,平面向量基本定理是平面内任意一个向量都可以用两个不共线的向量唯一地线性表示,这个定理的一个极为重要的导出结果是,如果 不共线,那么 的充要条件是 且 。,ab1212ab129.【答案】B 【分析】根据变换的结果,逆行变换后即可得到 经过变换后的函数解析式,通过比较即可确定sinyx的值。,【解析】把 图象上所有点的横坐标缩小到原来的 倍得到的函数解析式是 ,再把这sinyx2sin2yx个函数图象向右平移 ,得到的函数图象的解析式是 ,与已知函数比6sin()si()63yx较得 。2,3【考点】基本初等函数。【点评】本题考查三角函数图象的变换,试题设计成逆向考查的方式是比较有新义的。本题
17、也可以根据比较系数的方法求解,根据已知的变换方法,经过两次变换后函数 ,即被变换成sin()yx,比较系数也可以得到问题的答案。sin()6yx10【 答案】B 【分析】函数 在 上是单调递增的,这个函数有零点,这个零点是唯一的,根2logxf(0,)据函数是单调递增性,在 上这个函数的函数值小于零,即 。(,)a0()fx【考点】函数的应用。【点评】在定义域上单调的函数如果有零点,则只能有唯一的零点,并且以这个零点为分界点把定义域分成两个区间,在其中一个区间内函数值都大于零,在另一个区间内函数值都小于零。11.【答案】D 【分析】函数 是奇函数且是单调递增的函数,根据这个函数的性质把不等式转
18、化成一个具体的不等式。()fx根据这个不等式恒成立,【解析】根据函数的性质,不等式 ,即 ,即0)1()sin(mff(sin)(1)ffm在 上恒成立。当 时,即 恒成立,只要 即可,解sin1m0,2 1sin0得 ;当 时,不等式恒成立;当 时,只要 ,只要 ,只要0,这个不等式恒成立,此时 。综上可知: 。0【考点】基本初等函数。【点评】本题考查函数性质和不等式的综合运用,这里函数性质是隐含在函数解析式中的,其目的是考查考生是否有灵活使用函数性质简捷地解决问题的思想意识。在不等式的恒成立问题中要善于使用分类参数的方法解决问题,本题的解析是分类了函数,把参数放到一个表达式中,也可以直接使
19、用分离参数的方法求解,即 可以化为 ,当 时, ;当 时,sin1m(sin)1m2mR2,只要 即可,即只要 即可。综合两种情况得到 。)ifif 11m12.【答案】B 【分析】根据正六棱柱和球的对称性,球心 必然是正六棱柱上下底面中心连线的中点,作出轴截面即可O得到正六棱柱的底面边长、高和球的半径的关系,在这个关系下求函数取得最值的条件即可求出所要求的量。河南教考资源信息网 http:/ 版权所有侵权必究- 10 -【解析】以正六棱柱的最大对角面作截面,如图。设球心为 ,正六棱柱的上下底面中心分别为 ,O12,O则 是 的中点。设正六棱柱的底面边长为 ,高为 ,则 。正六棱柱的体积为O1
20、2, a2h29a,即 ,则 ,得极值点 ,不难知364Vah23(9)Vh3()V3h道这个极值点是极大值点,也是最大值点。故当正六棱柱的体积最大,其高为 。【考点】空间几何体、导数及其应用。【点评】本题在空间几何体、导数的应用交汇处命制,解题的关键是建立正六棱柱体积的函数关系式。考生如果对选修系列四的不等式选讲较为熟悉的话,求函数 的条件可以使用三个正数23(9)Vh的均值不等式进行,即 ,322222336()()(9)(9)43hVhhh等号成立的条件是 ,即 。2313.【答案】 1【分析】根据向量模的含义 ,讲已知代入即可。2()abababAA【解析】 ,故22 1() 193(
21、)2abA。13【考点】平面向量。【点评】本题考查平面向量数量积的计算和平面向量模的概念,其中主要的考查点是 ,这个关2aA系揭示了平面向量的数量积和模的关系。本题也可以根据向量减法的几何意义,通过余弦定理解决,实际上我们在【解析】中的计算式就是余弦定理的计算式。14.【答案】 。3【分析】画出平面区域,根据目标函数的特点确定其取得最小值的点,即可求出其最小值。【解析】不等式组 所表示的平面区域,如图所示。显然目标函数在点 处取得最小50xy (3,)B值 。3【考点】不等式。【点评】本题考查不等式组所表示的平面区域和简单的线性规划问题。在线性规划问题中目标函数取得最值的点一定是区域的顶点和边界,在边界上的值也等于在这个边界上的顶点的值,故在解答选择题或者填空题时,只要能把区域的顶点求出,直接把顶点坐标代入进行检验即可。15.【答案】 。22abc【分析】三条侧棱互相垂直的三棱锥的外接球,与以这三条侧棱为棱的长方体的外接球是相同的,这个长方体的体对角线的长度就是其外接球的直径。【解析】作一个在同一个顶点处棱长分别为 的长方体,则这个长方体的体对角线的长度是,abc,故这个长方体的外接球的半径是 ,这也是所求的三棱锥的外接球的半径。22abc22c【考点】推理与证明。