1、选修 1-1宝剑锋从磨砺出 梅花香自苦寒来 宝安数学老师瞿老师上门一对一 15915355718 QQ:1838471850第二章 2.4 抛物线抛物线)0(2pxy)0(2pxy)0(2pyx)0(2pyx定义平面内与一个定点 和一条定直线 的距离相等的点的轨迹叫做抛物线,点Fl叫做抛物线的焦点,直线 叫做抛物线的准线。Fl =点 M到直线 的距离l范围 0,xyR0,xyR,0xy,0xRy对称性 关于 轴对称 关于 轴对称( ,0)2p( ,0)2p(0, )2p(0, )2p焦点焦点在对称轴上顶点 (0,)O离心率 =1e2px2px2py2py准线方程 准线与焦点位于顶点两侧且到顶点
2、的距离相等。顶点到准线的距离焦点到准线的距离 p焦半径 1(,)Axy12pFx12AFx12pAFy12pAFyxyOlF xyOlFlFxyOxyOlF选修 1-1宝剑锋从磨砺出 梅花香自苦寒来 宝安数学老师瞿老师上门一对一 15915355718 QQ:1838471850焦 点弦 长AB12()xp12()xp12()yp12()yp以 为直径的圆必与准线 相切ABl若 的倾斜角为 ,则AB2sinp若 的倾斜角为 ,则AB2cospAB124x21yp焦点弦的几条性质 1(,)xy2BAFBF切线方程 00()ypx00()ypx00()xpy00()xpy1. 直线与抛物线的位置关
3、系直线 ,抛物线 ,消 y得:(1)当 k=0时,直线 与抛物线的对称轴平行,有一个交点;l(2)当 k0 时,0,直线 与抛物线相交,两个不同交点;=0, 直线 与抛物线相切,一个切点;l0,直线 与抛物线相离,无公共点。(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)o x2,ByFy 1,A选修 1-1宝剑锋从磨砺出 梅花香自苦寒来 宝安数学老师瞿老师上门一对一 15915355718 QQ:18384718502. 关于直线与抛物线的位置关系问题常用处理方法直线 : 抛物线 ,lbkxy)0(p1 联立方程法:pxy20)(22bxp设交点坐标为 , ,则有 ,以
4、及 ,还可进一步求1yA2B21,x出 ,bxkbxky)(12121 22)(x在涉及弦长,中点,对称,面积等问题时,常用此法,比如a. 相交弦 AB的弦长2121221 4)(xxkxkAB ak2或 2121221 )(yyy 2b. 中点 , , )(0xMx02 点差法:设交点坐标为 , ,代入抛物线方程,得),(1yA),(2yB121pxypx将两式相减,可得 )(2)(21121 xpy2121xya. 在涉及斜率问题时, 21ypkABb. 在涉及中点轨迹问题时,设线段 的中点为 ,),(0yxM,02121 ypypxy即 ,0kAB选修 1-1宝剑锋从磨砺出 梅花香自苦寒来 宝安数学老师瞿老师上门一对一 15915355718 QQ:1838471850同理,对于抛物线 ,若直线 与抛物线相交于 两点,点)0(2pyxl BA、是弦 的中点,则有),(0yxMABpxxkAB021(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)