自动控制理论-学习指南.docx

上传人:hw****26 文档编号:2288690 上传时间:2019-05-05 格式:DOCX 页数:15 大小:334.40KB
下载 相关 举报
自动控制理论-学习指南.docx_第1页
第1页 / 共15页
自动控制理论-学习指南.docx_第2页
第2页 / 共15页
自动控制理论-学习指南.docx_第3页
第3页 / 共15页
自动控制理论-学习指南.docx_第4页
第4页 / 共15页
自动控制理论-学习指南.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、自动控制理论-学习指南一、单项选择题1采用负反馈形式连接后,则 ( )A、一定能使闭环系统稳定; B、系统动态性能一定会提高;C、一定能使干扰引起的误差逐渐减小,最后完全消除;D、需要调整系统的结构参数,才能改善系统性能。2I 型单位反馈系统的闭环增益为 ( )A与开环增益有关 B. 与传递函数的形式有关C1 D. 与各环节的时间常数有关3典型二阶系统,当 时,无阻尼自然频率 与谐振频率 之间的关0.7nr系为 ( )A B. C D. rnrnrnrn4下列哪种措施对提高系统的稳定性没有效果 ( )。A、增加开环极点; B、在积分环节外加单位负反馈;C、增加开环零点; D、引入串联超前校正装

2、置。5. 关于传递函数,错误的说法是 ( ) 。A. 传递函数只适用于线性定常系统;B. 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响;C. 传递函数一般是为复变量 s 的真分式;D. 闭环传递函数的极点决定了系统的稳定性。6常用的比例、积分与微分控制规律的另一种表示方法是( )A. PI B. PD C. PID D. ID7积分环节的频率特性相位移为( )A. -90 B. 90 C. 180 D. -1808闭环系统的动态性能主要取决于开环对数幅频特性的( )A. 低频段 B. 开环增益 C. 高频段 D. 中频段9伯德图的中频段反映系统的( )A. 动态性能 B.

3、 抗高频干扰能力 C. 稳态性能 D. 以上都不是10利用奈奎斯特图可以分析闭环控制系统的( )A. 稳态性能 B. 动态性能 C. 抗扰性能 D. 以上都不是11.最小相角系统闭环稳定的充要条件是 ( )A.奈奎斯特曲线不包围(-1, )点 0jB.奈奎斯特曲线包围(-1, )点C.奈奎斯特曲线顺时针包围(-1, )点 jD.奈奎斯特曲线逆包围(-1, )点012.典型二阶系统,当 时,无阻尼自然频率 与谐振频率 之间的关.7=nr系为 ( )A. B. C. D.rnrnrnrn13.已知串联校正装置的传递函数为 ,则它是 ( )0.251(s+)A.相位迟后校正 B.迟后超前校正C.相位

4、超前校正 D.A、B、C 都不是14.二阶系统的闭环增益加大 ( )A.快速性越好 B.超调量越大C.峰值时间提前 D.对动态性能无影响15.系统的频率特性( )A.是频率的函数 B.与输入幅值有关C.与输出有关 D.与时间 t 有关16下列判别系统稳定性的方法中,哪一个是在频率里的判据( )A. 劳斯判据 B. 根轨迹法 C. 奈式判据 D. 以上都不是17闭环系统稳定的充要条件是其特征方程式的所有根均位于复平面的( )A. 实轴上 B. 左半部分 C. 虚轴上 D. 右半部分18积分环节的幅频特性,其幅值与频率成( )A. 指数关系 B. 正比关系 C. 反比关系 D. 不定关系19输出信

5、号与输入信号的相位差随频率变化的关系是( )A. 幅频特性 B. 传递函数 C. 频率响应函数 D. 相频特性20对于一阶、二阶系统来说,系统特征方程的系数都是正数是系统稳定的( )A. 充分条件 B. 必要条件 C. 充要条件 D. 以上都不是21某系统单位斜坡输入时 ,说明该系统 ( )seA是 0 型系统 B. 闭环不稳定C闭环传递函数中至少有一个纯积分环节 D. 开环一定不稳定22I 型单位反馈系统的闭环增益为 ( )A与开环增益有关 B. 与传递函数的形式有关C1 D. 与各环节的时间常数有关23典型二阶系统,当 时,无阻尼自然频率 与谐振频率 之间的0.7nr关系为 ( )A B.

6、 C D. rnrnrnrn24开环系统 Bode 图如图所示,对应的开环传递函数 应该是 ( )()GsA B. 21s21sC. D. 12s21s25.最小相角系统闭环稳定的充要条件是 ( )A. 奈奎斯特曲线顺时针包围(-1, )点 0jB.奈奎斯特曲线包围(-1, )点jC. 奈奎斯特曲线不包围(-1, )点 D.奈奎斯特曲线逆包围(-1, )点0j26动态系统 0 初始条件是指 时系统的 ( )tA输入为 0 B. 输入、输出以及它们的各阶导数为 0C输入、输出为 0 D. 输出及各阶导数为 027闭环零点影响系统的 ( )A稳定性 B. 稳态误差C调节时间 D. 超调量28若开环

7、传递函数为 , 此时相位裕量和的关系是( )1)(TsKGA. 随 K 增加而增大 B.随 K 增大而减小C.以上都不是 D.与 K 值无关29. 在典型二阶系统传递函数 中,再串入一个闭环零点,2()nss则 ( )A超调量减小 B. 对系统动态性能没有影响C超调量增大 D. 峰值时间增大30. 两典型二阶系统的超调量 相等,则此两系统具有相同的( )%A自然频率 B. 相角裕度nC阻尼振荡频率 D. 开环增益 Kd31典型欠阻尼二阶系统的超调量 ,则其阻尼比的范围为( )%5A B. 101C. D. 0.7.732采用超前校正对系统抗噪声干扰能力的影响是( )A. 能力上升 B. 能力下

8、降 C. 能力不变 D. 能力不定33既可判别线性系统稳定性又可判别非线性系统稳定性的方法是( )A. 劳斯判据 B. 根轨迹法 C. 奈式判据 D. 李亚普诺夫直接法34传递函数只适合于( )A. 线性定常系统 B. 线性系统 C. 线性时变系统 D. 非线性系统35控制系统时域分析中,最常用的典型输入信号是( )A. 脉冲函数 B. 阶跃函数 C. 斜坡函数 D. 正弦函数36.开环对数频率特性沿 轴向左平移时 ( )A. 减少, 增加 B. 减少, 不变 c cC. 增加, 不变 D. 不变, 也不变37.某 0 型单位反馈系统的开环增益为 K,则在 输入下,系统的稳态12r(t)=/t

9、误差为 ( )A.0 B. C. D.1/ *A/K38.单位反馈系统的开环传递函数 ,其幅值裕度 等于 ( )642G(s)=+)hA.0 B. dB C.16dB D.42 39.欠阻尼二阶系统的 ,都与 ( )n,A. 有关 B. 无关 C. 有关 D. 无关%pt pt40.两典型二阶系统的超调量 相等,则此两系统具有相同的 ( )A.自然频率 B.相角裕度n C.阻尼振荡频率 D.开环增益dK41改善系统在参考输入作用下的稳态性能的方法是增加( )A. 振荡环节 B. 积分环节 C. 惯性环节 D. 微分环节42惯性环节又称为( )A. 积分环节 B. 微分环节 C. 一阶滞后环节

10、D. 振荡环节43根轨迹终止于( )A. 闭环零点 B. 开环零点 C. 闭环极点 D. 开环极点44若要改善系统的动态性能,可以增加( )A. 积分环节 B. 振荡环节 C. 惯性环节 D. 微分环节45PD 控制规律指的是( )A. 比例、微分 B. 比例、积分 C. 积分、微分 D. 以上都不是46某 0 型单位反馈系统的开环增益为 K,则在 输入下,系统的稳2()1/rtt态误差为( )A0 B. C. D. / */AK47若二阶系统处于无阻尼状态,则系统的阻尼比 应为( )A B. =01C. D. 148二阶系统的闭环增益加大( )A快速性越好 B. 超调量越大 C. 峰值时间提

11、前 D. 对动态性能无影响49. 单位反馈系统的开环传递函数 ,其幅值裕度 h 等于( 16()42)Gs)A0 B. dB C. 16dB D. 4250. 两典型二阶系统的超调量 相等,则此两系统具有相同的( )%A自然频率 B. 相角裕度nC阻尼振荡频率 D. 开环增益 Kd二、判断题1原函数 拉氏变换式是 ( )2(1)2ssX)(tx)cos(in21tet) ;2典型欠阻尼二阶系统,当开环增益 K 增加时,系统无阻尼自然频率 增大n( ) ;3. 劳斯判据为:系统稳定的充要条件是特征方程系数所组成的劳斯阵列第一列元素符号一致,则系统稳定。( )4一个线性系统稳定与否取决于输入信号的

12、形式及系统本身的结构和参数( );5采用拉氏变换,可将系统的代数方程转换成微分方程求解( ) 。6传递函数分母多项式的根,称为系统的零点( ) ;7PID 控制中 I 的含义为微分( ) ;8系统输出超过稳态值达到第一个峰值所需的时间为峰值时间( ) ;90 型系统开环对数幅频渐进特性的低频段斜率为-20 ( ) ;dB/ec10系统稳定的充要条件是其所有特征根都具有正的实部( ) 。11 “三频段理论”为我们提供了串连校正的具体方法( ) ;12幅值裕度 h 是由开环频率特性引出的指标( ) ;13闭环零点影响系统的稳定性( ) ;14若系统开环稳定,则系统闭环不一定稳定( ) ;15由开环

13、零极点可以确定系统的闭环性能( ) 。16通过最小相位系统的开环幅频特性可以判断其稳定性( ) ;17闭环传递函数中积分环节的个数决定了系统的类型( ) ;18谐振峰值反映了系统的相对稳定性( ) ;19比例环节的频率特性相位移为 0( ) ;20凡是具有反馈的控制系统都是稳定的( ) 。21二阶系统的谐振峰值与阻尼比无关( ) ;22开环控制的特征是系统有反馈环节( ) ;23对于最小相位系统,若相位裕量 ,则相应的闭环系统不稳定( ) ;024稳定性是对一个控制系统的最基本要求( ) ;25根轨迹只能用于确定系统的闭环稳定性( ) 。三、计算题1系统的闭环传递函数为 816()2.74)(

14、0.3)(0.23)Gssjsj问该系统是否存在主导极点?若存在,求近似为二阶系统后的单位阶跃响应?2设某控制系统的开环传递函数为)2()2sksG试绘制参量 k 由 0 变至时的根轨迹图,并求开环增益临界值。3如图所示的采样控制系统,要求在 作用下的稳态误差 ,试tr)( Tes25.0确定放大系数 及系统稳定时 的取值范围。KT4已知系统开环传递函数 试概略绘制幅相特性曲线,并)5.0(21)(ssG根据奈氏判据判定闭环系统的稳定性。5单位反馈系统的开环传递函数为 ,求各静态误差系数和)5()s时的稳态误差 .25.01)(ttrse6实系数特征方程 ,要使其根全为实数,试确0)6(5)(

15、23asA定参数 的范围。a7.已知系统的开环传递函数为 ,试根据奈氏判据确定)18.02.()ssG闭环系统的稳定性。8设单位反馈系统的开环传递函数为 ,要求校正后系()1)(0.25)Kss统的静态速度误差系数 v5(rad/s),相角裕度 45,试设计串联迟后校正装置。9已知单位反馈系统的开环传递函数为 ,试分别求)2)(417)(2ssG出当输入信号 和 时系统的稳态误差 。ttr),(12 (tcrte10单位反馈系统的开环传递函数为 ,试绘制系统根轨)174()2(sKs迹,并确定使系统稳定的 值范围。K参考答案一、选择题1-5DABAB 6-10CADAA 11-15ABCDA

16、16-20CBCDB 21-25AABAC26-30BDADB 31-35DADAB 36-40BBDCB 41-45BCCDA 51-50BBDDB二、判断题1-5YYYNN 6-10NNYNN 11-15NYNYN 16-20YNYYN 21-25NNYYN三、计算题1存在主导极点, , ,系统近似为10.23sj20.3sj978().)(.)Gsjj,n0360.1e()29.8sin(.35740)tyt t2解:1) jpjp110322) 5,3aa3) = , =4,开环增益临界值为 K=2。jck3解 )(111)()( TTezKezKsZsKzG 因为 2)()()(1) zzRETT所以 zeKezze TTs 5.0)1()(1lim21 由上式求得 。4K该系统的特征方程为 0)1(4)(1)(1TTezezzG即 )53(2Tzz令 代入上式得wz1 026)1(2)1(4TTTewe列出劳斯表如下

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。