高中数学必修二立体几何知识点总结.doc

上传人:hw****26 文档编号:2315143 上传时间:2019-05-06 格式:DOC 页数:4 大小:136KB
下载 相关 举报
高中数学必修二立体几何知识点总结.doc_第1页
第1页 / 共4页
高中数学必修二立体几何知识点总结.doc_第2页
第2页 / 共4页
高中数学必修二立体几何知识点总结.doc_第3页
第3页 / 共4页
高中数学必修二立体几何知识点总结.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高, h为斜高,l 为母线)cS直 棱 柱 侧 面 积21正 棱 锥 侧 面 积)(1h正 棱 台 侧 面 积 rS圆 柱 侧lrS2圆 柱 表l圆 锥 侧 面 积圆 锥 表R)(圆 台 侧 面 积22Rl圆 台 表柱体、锥体、台体的体积公式VSh柱 13锥 ()Sh台 2Vr圆 柱 31圆 锥 221()()3ShrRh圆 台(4)球体的表面积和体积公式:V 球 = 34 ; S 球 面 = 24R第二章 直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系1 平面含义: 平面是无限延展的2 三个公理:(1) 公理 1

2、:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为ALBL = lAB公理 1 作用:判断直线是否在平面内.(2) 公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C 三点不共线 = 有且只有一个平面 ,使 A、B、C。公理 2 作用:确定一个平面的依据。(3) 公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P =L,且 PL公理 3 作用:判定两个平面是否相交的依据.LACBAP L22.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;

3、平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线abcb强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。公理 4 作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点: a与 b所成的角的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为了简便,点 O 一般取在两直线中的一条上; 两条异面直线所成的角 (0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记

4、作 ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a 来表示a a=A a共面直线=ac232.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线

5、平行,则线面平行。符号表示: a b = aab2.2.2 平面与平面平行的判定1、 两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a b ab = P ab2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4 直线与平面、平面与平面平行的性质1、 直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a a ab= b作用:利用该定理可解决直线间的平行问题。2、 两个平面平行的性质定理:如果两个

6、平行的平面同时与第三个平面相交,那么它们的交线平行。符号表示:= a ab = b作用:可以由平面与平面平行得出直线与直线平行2.3 直线、平面垂直的判定及其性质42.3.1 直线与平面垂直的判定1、定义:如果直线 L 与平面 内的任意一条直线都垂直,我们就说直线 L 与平面 互相垂直,记作 L,直线 L 叫做平面 的垂线,平面 叫做直线 L 的垂面。如图,直线与平面垂直时,它们唯一公共点 P 叫做垂足。PaL2、 直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2 平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B2、二面角的记法:二面角 -l- 或 -AB-3、 两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.3 2.3.4 直线与平面、平面与平面垂直的性质1、 直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。2、 两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。