1、负数的认识 教学内容分析: 本节课是在已经认识了自然数、分数、小数的基础上,学生初步认识负数。教材结合学生熟悉的生活情境,唤起学生已有的生活经验,引导学生在具体直观的情境中认识负数。同时,教学注重体现数学知识形成的逻辑性和数学知识与生活联系的紧密性,以及数学学科与其他学科之间的联系性。 教学目标: 1、在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道 0 不是正数也不是负数。 2、初步学会用负数表示一些日常生活中的实际问题,如温度、电梯、收支、海拔、方向等涉及到的负数。 3、感受负数产生与发展,体 验负数对生活的帮助,体会数学的简洁之美。 教学重难点: 0 既不是整数也不是负数。
2、 正数和负数表示相反意义的量。 正负数在数轴上的表示。 负数与标准量的关系。 一、游戏激趣 ,有机渗透 师:还有几分钟上课了,我们先做个热身的游戏,好不好? 师:说一组相反的词,做一组相反的动作 东(西) 上(下) 左(右) 前(后) 起立(坐下) 拍手(跺脚) 师:刚才的活动,你能用一个词来概括一下吗? 生:相反。 过渡: 生活中存在着许多这样相反的情况。这样相反的情况,怎样用数学来表示呢? 这节课我们就一起来研究 。 二、通过“你知道吗”这个栏目, 引出负数及其 发展史 师:今天早上,陶老师坐公交车来上班。看到前面的两辆公交车上分别有 3 人上车和 3 人下车。老师把 1 号车上车 3 人
3、、 2 号车下车 3 人用下表表示,你觉得是不是已经把意思表达清楚了呢? 上下车情况 1 号车 3 人 2 号车 3 人 生:没有,看不出到底是上车 3 人还会下车 3 人。 是:也就是说虽然都是 3 人,但两个 3 人表示的实际意义是相反的。它们是一组具有相反意义的量(板书:相反意义)。那么你能用自己的方式把它们区别开吗? 探究 : 1、交流大家的想法 预设:绝大多数的学生在 3 的 前面加“上车”、“下车”,有个别人加正负号。 2、配合“你知道吗”栏目,介绍人类探究负数的历史并比较各种表示方法。 师:请同学们阅读“你知道吗”栏目。 师:刚才我们阅读了“你知道吗”栏目,你知道了什么呢? 生:
4、我知道我们国家是最早发现负数的国家(国家自豪感);负数用“ ”表示,正数用“ +”表示 师:是的 ,相反意义的量怎样表示,历史上的数学家们在这个问题上也废了很多周折,想了很多方法。例如用不同的颜色区别,画斜杠表示,加不同符号表示。最后大家统一用“ +”“ -”表示。这样最简单明了。 师:所以刚才陶老师看到 的公交车上下乘客情况,我们用正负的形式表示(如下表) ,就把意思表达清楚了。我们分别读作正 3 和负 3.(板书: +3、 -3) 上下车情况 1 号车 +3 2 号车 3 试一试: 下面那两个量是一组具有相反意义的量“用线连一连,并用“ +”“ -”的方式表示它们。 赢了 5 元 支出 8
5、00 元 收入 1000 元 减少 20 千克 上升 2 米 输了 10 元 增加 4 千克 下降 18 米 师:为了表示具有相反意义的量,我们接触了一种新的数,我们称之为负数 (板书课题:负数) ,前面的符号叫做 “符号”。而原先我们学的数叫正数,前面的符号叫做正号。在表达正数的时候,为了方便,正号可以不写。 练习:同桌互相写几个正数和负数,并读一读。 三、 画图探究 ,进一步 负数的意义 1.画图理解“ -2 层”,明白 0 是正数和负数的分界线 师:现在请同学们结合自己对负数的理解,把“ -2 层”“ -5C”表示的含义,用图画出来。 画好的,先组内进行交流,然后我们全班进行展示。 学生
6、组内交流,随后全班反馈。 预设 1:学生没有画底面 师:对于他的作品,大家有什么意见吗?有什么需要补充的吗? 生 1:我觉得还要把地 面画出来这样看起来 更清楚。 生 2:只有知道地 面在哪里,我们才能知道,哪些房间在地上,哪些房间在地下。地上的用整数表示,地下的用负数表示。 师:说得真好!老师这儿也画了一幅图,那是一幢有地下室的房间,现在,你能看出打问号的那层是第几层吗?(如下图) 生:不知道。因为我们还不知道底面在哪里。 师:如果我用一条直线表示地 面(如下图),现在,你能祝确定问号所在是第几层吗? 生:是 -2 层、 1 层、 -3 层、 -1 层 师:奇怪,同样是这层楼,为什么大家给出
7、的答案不一样啊? 生 1:因为地面变了,相应的楼层也就变了。 生 2:我觉得底面 就是地上和地下的分界线,分界线变了,楼层当然就变了。 生 3:我觉得地面 就像是 0 层,只要我们知道 0 层在哪里我们才能确定问号所在的到底是第几层。 师小结:说的太棒了!看来,判断楼层究竟是 正数还是负数,究竟是第几层,关键还是取决于地面 ,也就是 0 所在的位置啊! 0 就是分界线。 师:( ppt 把“层”字去掉) 0 上面的 1,2,3都是正数, 0 下面的 -1, -2, -3都是负数,0 是什么 数? 生: 0 是分界线, 0 既不是正数也不是负数。 2、画图理解“ -5C” ,明白正负数数量相同,
8、意义相反 师:继续来看 -5C,谁来给大家展 示一下? 预设 1:没有画 0 C 师:对于他的作品,大家有什么意见吗?有什么需要补充的吗? 生:我觉得他画得不好,因为他没有画出 0 C,就确定比 0 C 高哈市比 0 C 低。 预设 2:没有画零上温度,只画零下温度 师:我很好奇,别的同学在 0 C 下面,标的都是 -1、 -2 这样数,可是这个同学标的却是 1/2/3这样的数,你是不是漏写了什么? 生:没有漏写,温度计不管是 0 的上面还是下面,都没有符号。 师:( ppt 展示温度计)哎,温度计 0 下面的温度的确没有负号,那么问题来了, 0 的上面和下面都没有负号,我们到底该怎么 区别哪
9、些是正数,哪些是负数呢? 生 :1:我觉得 0 上面的是正数, 0 下面是负数。 生 2:温度计是根据水银热胀冷缩的原理设计的。温度越高,升的就越高。所以,我也认为0 上面的是正数,下面的是负数。 预设 3:直接展示温度计 师:仔细观察这个温度计 ,怎么 0 的上面和下面都没有负号,我们到底该怎么区别哪些是正数,哪些是负数呢? 生 :1:我觉得 0 上面的是正数, 0 下面是负数。 生 2:温度计是根据水银热胀冷缩的原理设计的。温度越高,升的就越高。所以,我也认为0 上面的是正数,下面的是负数。 师:你能在这个温度计上找到“ -5 C” 吗?那这个是“ +5 C” 师:看图,仔细观察 +5 C
10、 和 -5 C,它们有什么相同之处? 生:到 0 C 的距离都相同,都是 10 C。 师 :它们有什么不同之处? 生:表示的方向不同,意义不同,是相反的。 +5 C 表示零上 5 C, -5 C 表示 0 下 5 C。 师小结:所以负数和相对应的正数在数量上相等,表示的意义相反。 3、借助数轴初步体会数轴上正负数的排列顺序,帮助比较两个负数的大小 师:如果我们把温度计倒一下,就可以抽象变成一个数轴。 师:请同学把 1/2/3/4 这些数标在数轴上。 生 1 上台标数,如下图 。 师:拿这些数(出示 、 2.5)呢? 生 2 上台标,并说一说你是怎么想的? 生 2:(指 )它在 0 和 1 之间
11、,把这一单位长度平均分成 4 份,以 0 为起点向右,其中的一份就是 。 师:说的真清楚!以 0 为分界点,正数在 0 的右边,在数轴上找正数对应的点,以 0 为以前向右。 数:数轴上不仅可以表示 0 和整数,还可以表示负数,请把 -1、 -2、 -3、 -4 这些负数在数轴上表示出来,说说你是怎样想的。 生 3 上台标数。 生 3:因为负数都在 0 的左边,以 0 为分界线 , 1 和 -1 是两个相反意义的数, 1 在 0 的右边第一大格,那么 -1 就应该在 0 向左边第一大格处。 师(强调):在数轴上找正数是以 0 为分界线往右,找负数时以 0 为分界线往左。那么能不能把 、 -2.5
12、 在数轴上表示呢?说说你是怎样找的。 生 4(边写边说):首先我确定 在 -1 和 0 之间的单位长度上,把这一单位长度平均分成 3份,然后以 0 为起点往左数,就应该在这个点上。同样的, -2.5 在 -2 和 -3 之间的单位长度的中间。 师:我们已经知道数轴上的数从左到右就是从小到大排列的,那么你能 比较 、 -2.5 的大小了吗? 生:从数轴上可以看出 在 -2.5 的右边所以 -2.5 师:很好,那我们可以怎样比较了两个负数的大小? 生:在数轴上将两个负数的位置找到,再比较两个负数的大小。 生:哪个数在最右边,那个数就大。 师:我们可以利用数轴比较两个负数的大小,关键是要找准这两个负
13、数在数轴上的位置,越往右越大,越往左越小。 师:所以正数都比负数大,对还是错? 生:对。 正数在 0 的右边,负数在 0 的左边,越往右越大,所以正数都大于负数。 4、感受负数在生活中的运用 ,以 0 为标准量 师:负数是我们的好朋友,在生活中,你还在哪看到过他?并说一说它表示的意思。 生 1:在银行卡上找到了 -200 元,它表示支出 200 元。 生 2:海拔 100 米,表示比海平面低 100 米。 ( ppt 展示)下表是六( 2)班 6 名男生的身高,以他们的平均身高 154cm 为标准,把平均身高记为 0cm,超过的身高记为正不足的身高记为负,用正负数表示他们的身高。(单位:cm)
14、 师:以平均身高为标准,记为“ 0cm”怎样理解呢? 生:如果身高刚好是 154cm,用 0cm 表示。如果比 154cm 还高,用正数表示,如果不足的用负数表示。 师: 0 一般表示没有。为什么把平均身高 154cm 用“ 0cm”表示? 生:这里的 0cm 不是表示没有,而是相当于数轴上的 0,是一条分界线。 生:以平均分高为标准,就相当于平均身高为分界线。 154cm 记作: 0cm。 师:是的。 0 在不同的环境在表示不同的意义,以谁为标准,就把谁用“ 0”表示。 1 号男生的身高用正负数怎么表示? 生:用 +6cm 表示。 师:怎样确定用 +6,而不是用 +160 表示呢? 生:超过
15、的身高 是比平均身高多出的部分, 1 号女神身高 160cm 比标准身高 154cm 多出 6cm,所以记作: +6cm。 师: 2 号女生呢? 生: 2 号女生没有达到标准,还差 2cm,记作: -2cm。 生: 3 号女生刚好达到 154cm,不多也不少,记作: 0cm。 师生继续进行练习。 四、练习巩固 1、比 90 分多 5 分 ,记作 :+5 分。那么 ( )分可以记作 :-4 分。 2、如果小军跳绳 125 下,成绩记作 +5 下;小乐跳绳成绩记作 0 下,表示小乐跳绳 ( ) 下 ;那么小明成绩记作 -6 下,实际跳了( )下。 3、“净含量: 10 1kg”,表示合格重量最多是 ( )kg,最少是( ) kg。 4、如果往东走 5m,记作 +5m,那么 -10 米表示( )。 如果往东走 5m,记作 -5m,那么 -10 米表示( )。 【思考题】一辆公交车从起点站开出后,途中经过五个停靠站,最后到达终点。下表记录了这辆公交车载客的变化情况(上车记为正,下车记为负)。 1、中间五站中哪个站没有人上车,哪个站没有人下车? 2、第三站到第四站途中车上有多少乘客? 3、这趟公交一共有多少人乘坐? 4、从表中你还能得到哪些 信息? 四:课堂总结 这个节你有什么收获?