杨氏模量的测量.doc

上传人:hw****26 文档编号:3070479 上传时间:2019-05-20 格式:DOC 页数:7 大小:64KB
下载 相关 举报
杨氏模量的测量.doc_第1页
第1页 / 共7页
杨氏模量的测量.doc_第2页
第2页 / 共7页
杨氏模量的测量.doc_第3页
第3页 / 共7页
杨氏模量的测量.doc_第4页
第4页 / 共7页
杨氏模量的测量.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、杨氏模量的测量一、教学内容杨氏模量的测量二、教学目标1掌握用光杠杆测量微小长度变化量的原理。2掌握望远镜直尺组的调节方法。3测定金属丝的杨氏模量。4学习用逐差法处理数据。5巩固用不确定度表示测量结果的方法。三、教学重、难点1 “逐差法处理数据 ”是重点。2 “光杠杆测量微小长度变化量的原理” 是重点也是难点。3 “望远镜直尺组的调节 ”是难点。四、教学时数3课时五、实验类型综合型实验六、教学过程1引言2主要教学过程(1)点名,填写实验平时成绩记录表。 (5min)(2)审查学生实验预习报告并签字,学生针对实验仪器预习。 (10min)(3)介绍实验仪器(5min) 。(4)按照实验步骤以提问互

2、动的方式进行实验。 (30min)问题一:如何调节杨氏模量实验仪?答:调节杨氏模量实验仪的底角螺丝,使立柱铅直(平台水平) 。检查螺丝夹能否在平台圆孔内上下自由移动。在钢丝下端托盘上加挂初始砝码,拉直钢丝。问题二:如何放置光杠杆?答:调节光杠杆后足固定螺丝,使前后足之间的距离适当,后足竖直向下。将光杠杆前足放在平台的凹巢里,后足轻轻搭在平台的螺丝夹上,后足杆和钢丝应在一个平面内。调节光杠杆平面镜倾角,使之在竖直平面内并固定。问题三:如何进行望远镜直尺组的粗调?答:将望远镜直尺组放在离光杠杆平面镜前1.52.0m 处,使望远镜和光杠杆处于同一高度(等高) 。将望远镜水平放置,望远镜轴心线和刻度尺

3、平面竖直。调节望远镜的左右位置和在平面内的方位,使沿望远镜镜筒方向观察光杠杆平面镜面,能够看到刻度尺的像(同轴) 。问题四:如何进行望远镜直尺组的细调?答:微调望远镜的方位,使刻度尺的像位于视场中央。然后调节目镜,使十字叉丝清晰。再调物镜,使望远镜视场中十字叉丝和刻度尺的像均很清晰。问题五:怎样消除视差?答:调节光杠杆平面镜镜面倾角,使十字叉丝对准刻度尺上与望远镜同一高度的位置;微调物镜,消除视差(上下稍许移动眼睛,刻度线与十字叉丝横线之间不出现相对移动就是无视差) 。问题六:如何进行测量?答:仪器调整完毕,记录加挂初始砝码时望远镜中十字叉丝对准刻度尺上某一刻度的像 a0。逐次增加1.0kg

4、砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a1,a 2,a 5,砝码加到5.0kg 时,在逐次减少1.0kg 砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a4,a 3,a 0。由逐差法求出。问题七:的物理意义是什么?答:根据逐差法计算出来的表示净增3kg 砝码从望远镜目镜中观察到的十字叉丝在刻度尺的像上移动的距离。问题八:还需要测量哪些物理量?答:用钢卷尺测量钢丝的长度 l(上下螺丝夹之间的距离) ,测量5次。用钢卷尺测量光杠杆平面镜到刻度尺之间的垂直距离 D,测量5次。用螺旋测微器测量钢丝直径 d,选不同位置测量5次。取下光杠杆,将其放在一张平整的白纸(实验预习报告)上用力压,

5、用米尺测量光杠杆后足尖到前两足尖连线之间垂直距离 b,测量5次。(5)学生实验,实时指导。 (70min)(6)审核学生测量记录的实验数据(包括实验现象的记录等) ,在实验预习报告上签字。 (15min)(8)实验完毕,学生整理实验仪器、打扫实验室卫生。七、板书设计三、实验数据表格示范:1测量 a次数 1 2 3 4 5 6a / cm a/ cm 2测量 l、D、d、b次数 1 2 3 4 5l / cm D / cm d / cm b / cm 一、实验要求1掌握用光杠杆测量微小长度变化量的原理。2掌握望远镜直尺组的调节方法。3测定金属丝的杨氏模量。4学习用逐差法处理数据。5巩固用不确定度

6、表示测量结果的方法。二、实验内容1仪器调节(1)调节杨氏摸量测量仪(2)调节光杠杆、望远镜直尺组2测量(1)测量 a、记录12个点。(2)测量 l、D、d、b,分别测量五次。实验二 杨氏模量的测量附录:知识回顾胡克(R.Hooke 1635-1702)于1678年从实验中总结出,对于有拉伸压缩形变的弹性体,当应变较小时,应变与应力成正比,即称为胡克定律。因, ,故胡克定律又可表示为图11-1式中比例系数 E 称为杨氏模量。由于为纯数,故杨氏模量和应力有相同的单位:称为“帕斯卡 ”,可简称为 “帕”,国际符号为“Pa”。杨氏模量是表征材料本身弹性的物理量,由胡克定律可知,应力大而应变小,杨氏模量

7、较大;反之,杨氏模量较小。杨氏模量反映材料对于拉伸或压缩变形的抵抗能力。对于一定的材料来说,拉伸和压缩的杨氏模量不同,但通常二者相差不多。仅当形变很小时,应力应变才服从胡克定律。若应力超过某一限度,到达一点时,撤消外力后,应力回到零,但有剩余应变 ep,称为塑性应变。塑性力学便是专门研究这类现象恶毒。当外力进一步增大到某一点时,会突然发生很大的形变,该点被称为屈服点。在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。实验目的1学会用拉伸法测量金属丝的杨氏模量。2掌握用光杠杆装置测量微小长度变化量的原理。3学会用逐差法处理数据。图11-21平面镜 2后足 3前足实验仪器杨氏模量测量仪、光杠杆

8、、望远镜直尺组、螺旋测微器、米尺、钢卷尺、砝码等。杨氏模量测量仪如图11-1所示。A、B 为钢丝两端的螺丝夹,在 B 的下端挂有砝码的托盘,调节仪器底部的螺丝 J 可以使平台水平,且使 B 刚好悬于平台的圆孔中间。在平台上放有光杠杆 G,光杠杆前两足放在平台的槽内,后足尖放在螺丝夹 B 上。当钢丝伸长时,可通过望远镜直尺组测量光杠杆的偏转角,从而求出钢丝的微小伸长量。图11-31刻度尺;2望远镜调焦手轮;3望远镜轴线调整螺钉;4望远镜紧固螺钉;5缺口;6准星;7刻度尺紧固螺钉光杠杆由平面反射镜、前足、后足组成,如图11-2所示。镜面倾角及前、后足之间距离均可调。望远镜直尺组由刻度尺和望远镜组成

9、,如图11-3所示。转动望远镜目镜可以清楚地看到十字叉丝。调整望远镜调焦手轮并通过光杠杆的平面镜可以看到刻度尺的像,望远镜的轴线可以通过望远镜轴线调整螺钉调整,松开望远镜、刻度尺紧固螺钉,望远镜、刻度尺能够分别沿立柱上下移动。实验原理对于一根长为 l,横截面积为 S 的钢丝,在外力 F 的作用下伸长了 Dl,则由胡克定律可得(11-1)式中 E 为杨氏模量。设钢丝的直径为 d,则 S = pd2/4,将其代入式(1)并整理可得(11-2)DlDama0q2q图11-4Da实验中,我们测出拉力 F,钢丝长 l、直径 d 和微小伸长量 Dl,即可代入式(11-2 )求得杨氏模量 E。因为 Dl 不

10、易测量,所以测量杨氏模量的装置都是围绕如何测量微小伸长量而设计的。本实验利用光杠杆装置去测量微小伸长量 l,拉力 F 用逐次增加砝码的方式读出,钢丝长 l 用钢卷尺测出,直径 d 用螺旋测微器测出。光杠杆装置的原理图如图11-4所示。假设平面镜的法线和望远镜的光轴在同一直线上,且望远镜光轴和刻度尺平面垂直,刻度尺上某一刻度发出的光线经平面镜反射进入望远镜,可在望远镜中十字叉丝处读下该刻度的像,设为a0,若光杠杆后足下移 Dl,即平面镜绕两前足转过角度 q 时,平面镜法线也将转过角度 q,根据反射定律,反射线转过的角度应为2q,此时望远镜十字叉丝应对准刻度尺上另一刻度的像,设为 am。因为 Dl

11、 很小,且 Dlb,q 也很小,故有因 am - a0 D,故有联立两式,消去 q,有令 Da = am - a0 ,则有(11-3)式中 b 为光杠杆后足尖到前两足尖连线之间垂直距离,用米尺测出,D 为光杠杆平面镜到刻度尺之间的垂直距离,用钢卷尺测出,为加砝码前后刻度尺在平面镜中的像移动的距离,通过望远镜中十字叉丝可以读出。这样,样式模量的测量公式可以写为(11-4)式中,m 为砝码的质量,g 为重力加速度。实验时,我们首先记录未加砝码时望远镜中十字叉丝对准刻度尺上某一刻度的像 a0 ,然后逐次增加1.0kg 砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a1, a2 ,a 5,砝码加到

12、5.0kg 时,在逐次减少1.0kg 砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a4,a 3,a 0。求加砝码相等时的各次记录的平均值, , ,再由逐差法求出 m = 3kg 时 Da 的平均值(11-5)实验内容1仪器调节(1)调节杨氏摸量测量仪调整杨氏模量测量仪底部的螺丝使立柱铅直(平台水平) 。将光杠杆按要求放在平台上。目视检查其主杆是否水平,如不水平,可上下移动螺丝夹,待主杆水平后旋紧固定螺丝。检查螺丝夹能否在平台圆孔内上下自由移动。调整光杠杆平面镜使镜面位于铅直平面内。在钢丝下端托盘上加挂初始砝码(又称本底砝码,该砝码不应计入以后所加的力 F 之内) ,拉直钢丝。(2)调节光

13、杠杆、望远镜直尺组粗调。将望远镜直尺组放在离光杠杆平面镜前1.5 2.0m 处,使望远镜和光杠杆处于同一高度;将望远镜水平放置,望远镜轴心线和刻度尺平面竖直;调节望远镜的左右位置和在平面内的方位,使沿望远镜镜筒方向观察光杠杆平面镜面,能够看到刻度尺的像和观察者眼睛的像。细调。微调望远镜的方位,使刻度尺的像位于视场中央;然后调节目镜,使十字叉丝清晰;再调物镜,使望远镜视场中十字叉丝和刻度尺的像均很清晰。消除视差。调节光杠杆平面镜镜面倾角,使十字叉丝对准刻度尺上与望远镜同一高度的位置;微调物镜,消除视差(上下稍许移动眼睛,刻度线与十字叉丝横线之间不出现相对移动就是无视差) 。2测量(1)仪器调整完

14、毕,记录加挂初始砝码时望远镜中十字叉丝对准刻度尺上某一刻度的像 a0 。(2)逐次增加1.0kg 砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a1 , a2 ,a 5,砝码加到5.0kg 时,在逐次减少1.0kg 砝码,分别记录各次十字叉丝对准刻度尺上某刻度的像 a4,a 3,a 0。由逐差法求出。(3)用钢卷尺测量钢丝的长度 l(螺丝夹 A、B 之间的距离) ,光杠杆平面镜到刻度尺之间的垂直距离 D,分别测量5次。(4)用螺旋测微器测量钢丝直径 d,选不同位置测5次。(5)取下光杠杆,将其放在一张平整的白纸上用力压,用米尺测量光杠杆后足尖到前两足尖连线之间垂直距离 b,测量5次。注意事

15、项1在望远镜调整中,必须注意时差的消除,否则会影响读数的准确性。2实验过程中不得碰撞仪器,更不能移动光杠杆和望远镜直尺组和的位置。加挂砝码必须轻拿轻放,待系统稳定后才可读数,否则必须重做。3待测钢丝不得弯曲,若加挂初始砝码仍不能将其拉直或严重锈蚀的钢丝必须更换。思考题1如果实验时钢丝有些弯曲,对实验有何影响?如何从实验数据中发现这个问题?2实验中哪个量的测量误差对实验结果影响最大?对垂直距离 b 的测量为何不用精度较高的游标卡尺,而用米尺。3钢的杨氏模量为210 11Nm-2,而其极限强度(破坏应力)为7.5108Nm-2,二者是否矛盾?为什么?测量举例1测量 a次数 1 2 3 4 5 6a

16、i / cm 10.00 10.56 11.16 11.71 12.26 12.80ai/ cm 10.02 10.60 11.18 11.75 12.30 12.8010.01 10.58 11.17 11.73 12.28 12.80cmcm2测量 l、D、d、b次数 1 2 3 4 5 平均值l / cm 113.40 113.41 113.42 113.42 113.40 113.41D / cm 128.00 128.01 128.05 128.04 128.01 128.02d / cm 0.618 0.616 0.617 0.618 0.617 0.617b / cm 8.50 8.51 8.50 8.49 8.51 8.50uA(d) = 0.0003mm,u B(d) = 0.0023mm, uC(d) = 0.0023mmuA(D) = 0.01cm,u B(D) = 0.06cm, uC(D) = 0.06cmuA(l) = 0.004cm,u B(l) = 0.06cm, uC(l) = 0.06cmuA(b) = 0.003cm,u B(b) = 0.06cm, uC(b) = 0.06cmE = 1.941011Nm-2= 0.021011Nm-2E = (1.940.02)10 11Nm-2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。