1、第五章 一元函数积分学本章前半部分介绍不定积分的概念及其计算方法,然后简单介绍微分方程的基本概念以及利用不定积分方法求解两类简单微分方程;后半部分介绍定积分的概念、计算方法,以及定积分在几何和物理的应用。本章内容占全出考试内容 25%。重点是不定积分和定积分计算,难点是换元法,分部积分。5.1 原函数与不定积分的概念一、原函数与不定积分定义 5.1 设 f(x)是定义在区间 I 上的一个函数。如果 F(x)是区间 I 上的可导函数,并且对任意的 均有 或 Df(x)=f(x)dx 则称 F(x)是 f(x)在区间 I 上的一个原函数。例如,因为对任意的 均有 ,所以 sinx 是 cosx 在
2、区间(-,+)内的一个原函数。因为对任意的 均有 ,所以 arcsinx 是 在(-1,1)内的一个原函数。显然,一个函数的原函数不是唯一的。事实上,如果 F(x)是 f(x)在区间 I 上的一个原函数,即 ,那么,对任意常数 C,均有,从而 F(x)+C 也是 f(x)在区间 I 上的原函数。这说明,如果函数 f(x)在区间 I 上有一个原函数,那么 f(x)在 I 上有无穷多个原函数。另一方面,如果函数 F(x)和 G(x)都是函数 f(x)在区间 I 上的原函数,那么 ,从而 G(x)-F(x)=C,即 G(x)=F(x)+C,其中 C 为某个常数。因此,如果函数 f(x)在区间 I上有
3、一个原函数 F(x),那么 f(x)在区间 I 上的全体原函数组成的集合为函数族。定义 5.2 如果函数 f(x)在区间 I 上有原函数,那么称 f(x)在 I 上的全体原函数组成的函数族为函数 f(x)在区间 I 上的不定积分,记为 ,其中记号 称为积分号,f(x)称为被积函数,f(x)dx 称为被积表达式,x 称为积分变量。由定义以及前面的说明知,如果 F(x)是 f(x)在区间 I 上的一个原函数,那么,其中 C 为任意常数,例如 , 。一个函数要具备什么条件,才能保证它的原函数一定存在呢?关于这个问题,我们有如下结论,(证明略去)定理 5.1(原函数存在定理)如果函数 f(x)在区间
4、I 上连续,那么 f(x)在区间 I 上一定有原函数,即一定存在区间 I 上的可导函数 F(x),使得 。简单地说就是:连续函数必有原函数。由于初等函数在其定义区间上连续,所以初等函数在其定义区间上一定有原函数。怎样求一个连续函数的原函数或不定积分呢?后面几节讨论这个问题。下面仅给出一些简单函数的不定积分的例子。例 1:求不定积分 。答疑编号 10050101:针对该题提问解:因为 ,所以 为函数 xa的一个原函数。故 。例 2:求不定积分 。答疑编号 10050102:针对该题提问解:当 x0 时, ;当 x0 时, 。所以 是函数 在 上的一个原函数,从而不定积分有下而两条性质性质一 或性
5、质二 或例 3:设曲线通过点(1,0),且曲线上任一点处的切线斜率等于该点横坐标的两倍。试求此曲线的方程。答疑编号 10050103:针对该题提问解:(1)设曲线方程为 y=f(x),则由已知,曲线在点(x,f(x)处的斜率为曲线方程为 y=x2+C(2)曲线过点(1,0)0=1+C,C=-1曲线方程为 y=x2-1二、基本积分公式既然积分运算与微分运算互为逆运算,因此,正如例 1、例 2 中所做的那样,可以很自然地从导数或微分的基本公式得到相应的基本积分公式。下面将这些基本积分公式罗列如下:(1) ; (2) (k 为常数);(3) ; (4) ;(5) ;(6) ;(7) ; (8) ;(
6、9) ; (10) ;(11) ; (12) ;(13) ; (14) 。以上 14 个基本积分公式是求不定积分的基础,其他函数的不定积分往往经过运算变形后,最终都归结为这些不定积分,因此必须牢牢记住。下面举例说明如何利用这些公式计算一些简单的不定积分。例 4:求不定积分 。答疑编号 10050104:针对该题提问解:例 5:求不定积分 。答疑编号 10050105:针对该题提问解:例 6:求不定积分 。答疑编号 10050106:针对该题提问解:例 7:求不定积分 。答疑编号 10050107:针对该题提问解:由还原公式e 2lnx=x2三、不定积分的基本性质仅仅有以上的基本积分公式是很不够
7、的,即使像lnx,tanx,cotx,secx,cscx,arctanx,arccotx 这样一些基本初等函数,也无法直接利用以上基本公式给出它们的不定积分。因此,有必要从一些求导法则去导出相应的求不定积分的方法,并逐步扩充不定积分公式。这里首先从导数的加减运算得到不定积分的线性运算法则。定理 5.2 两个函数的和(或差)的不定积分等于函数的不定积分的和(或差),即。证明:设 F(x)和 G(x)分别为函数 f(x)和 g(x)的原函数,则,其中 C1,C 2为两个任意常数。因此有其中 C=C1C2为任意常数。另一方面,因为所以 F(x)G(x)为 f(x)g(x)的一个原函数,从而因此定理
8、5.2 可以推广到有限多个函数相加减的情形,即类似地我们可以证明下列性质。定理 5.3 求不定积分时,被积函数中非零的常数因子可以提到积分号外面来,即(k0 为常数)以上两个性质(定理 5.2 和定理 5.3)称做不定积分的线性性质。利用不定积分的线性性质可以求出一些简单函数的不定积分。例 8:求不定积分答疑编号 10050108:针对该题提问解: =-2cosx+3arcsinx+C例 9:求不定积分答疑编号 10050109:针对该题提问解:例 10:求不定积分答疑编号 10050110:针对该题提问解:这里利用了三角恒等式:sec 2x=1+tan2x例 11:求不定积分答疑编号 100
9、50111:针对该题提问解:这里利用了三角恒等式:sin 2x+cos2x=1例 12:求不定积分答疑编号 10050112:针对该题提问解:例 13:已知 ,求 f(x)。答疑编号 10050113:针对该题提问解:因为 ,所以 ,故。例 14:求答疑编号 10050114:针对该题提问解:例 15:求答疑编号 10050115:针对该题提问例 16:求答疑编号 10050116:针对该题提问解:例 17:若 F(x)是 sinx2的原函数。求答疑编号 10050117:针对该题提问解:F(x)是 sinx2的原函数例 18:填空 =_答疑编号 10050118:针对该题提问解:由性质5.2
10、 不定积分的换元法5.1 介绍了原函数与不定积分的概念、基本积分公式以及不定积分的线性性质,并通过例子说明如何利用它们直接计算某些函数的不定积分。但是仅仅利用不定积分的线性性质和基本积分公式所能计算的不定积分非常有限。因此有必要进一步研究不定积分的求法。本节介绍如何将复合函数的微分法反过来用于计算不定积分,利用中间变量的代换得到复合函数的不定积分,这就是通常说的不定积分的换元积分法,简称换元法。换元积分法通常分成两类:第一换元法和第二换元法。一、第一换元法(凑微分法)定理 5.4 设 f(u)具有原函数, 可导,则证明:设 F(u)为 f(u)的一个原函数,即 ,故又因为 可导,所以 可导,并
11、且因此 为 的一个原函数,从而公式(1)叫第一换元积分公式,在实际应用第一换元积分公式求不定积分时。因为。因此公式(1)也可写作,其中 u=g(x)若不定积分 容易计算。则可得例 1:求不定积分答疑编号 10050201:针对该题提问解:被积函数 sin3x 是一个复合函数,它是由 f(u)=sinu 和 复合而成。因此,为了利用第一换元积分公式,我们将 sin3x 变形为 故有例 2:求不定积分答疑编号 10050202:针对该题提问解:函数 是一个复合函数,它是由 和 复合而成。为了利用第一换元积分公式,将函数 变形为故例 3:求不定积分 。答疑编号 10050203:针对该题提问解:函数
12、 是复合函数,它是由 和 复合而成,而 ,所以被积函数可以变形为由第一换元积分公式有由以上各例的解题过程可以看出,要用第一换元积分法求不定积分的主要步骤是:(1)变换积分形式(或凑微分),即 ;(2)作变量替换 g(x)=u,有 ;(3)利用常用的积分公式求出不定积分: ;(4)将 u=g(x)代回得 。其中最关键的是第一步,即如何凑出合适的微分。因此,第一换元积分法也称为凑微分法。例 4:设 F(x)为函数 f(x)的一个原函数,求 。答疑编号 10050204:针对该题提问解:因为 f(lnx)为函数 f(u)和 的复合,并且 ,所以。故由第一换元积分公式有例 5:设 ,求 。答疑编号 1
13、0050205:针对该题提问解:函数 f(e-x)是由 f(u)和 u=e-x复合而成,而 ,故由第一换元积分公式有当比较熟练以后,就没必要将中间变量明显地设出来。例 6:求下列积分:(1) ;答疑编号 10050206:针对该题提问(2) ;答疑编号 10050207:针对该题提问(3) 。答疑编号 10050208:针对该题提问解:(1)(2)(3)因为 ,故这样,我们得到三个积分公式:,。例 7:计算下列不定积分:(1) ;答疑编号 10050209:针对该题提问(2) ;答疑编号 10050210:针对该题提问(3) ;答疑编号 10050211:针对该题提问(4) ;答疑编号 100
14、50212:针对该题提问解:(1)(2)(3)(4)解法一:解法二:例 6 和例 7 中,没有具体引入中间变量进行换元,而是凑微分后直接利用积分公式,从而也就不再有还原的过程。因此,利用凑微分法计算不定积分可以极大地简化求解书写的过程。显然,熟记一些凑微分公式是十分必要的。下面给出一些常见的凑微分形式: ; ;特别情形 ,特别情形 ; ; ; ; ; ; ; 。例 8:求不定积分(1) ,答疑编号 10050213:针对该题提问(2) ,答疑编号 10050214:针对该题提问(3) ,答疑编号 10050215:针对该题提问(4) ,答疑编号 10050216:针对该题提问(5) ,答疑编号 10050217:针对该题提问(6) ,答疑编号 10050218:针对该题提问(7) ,答疑编号 10050219:针对该题提问解:(1) (令 u=3x+1)(2)(3)(4)(5)