期末复习:常用逻辑用语.doc

上传人:11****ws 文档编号:3095670 上传时间:2019-05-21 格式:DOC 页数:9 大小:237.50KB
下载 相关 举报
期末复习:常用逻辑用语.doc_第1页
第1页 / 共9页
期末复习:常用逻辑用语.doc_第2页
第2页 / 共9页
期末复习:常用逻辑用语.doc_第3页
第3页 / 共9页
期末复习:常用逻辑用语.doc_第4页
第4页 / 共9页
期末复习:常用逻辑用语.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、本讲教育信息】一. 教学内容:期末复习:常用逻辑用语学习目标命题与量词,含有“或”、“且”、“非”复合命题的概念及其构成形式,初步掌握四种命题的关系;准确理解充分条件,必要条件,充要条件的含义。并会判断与证明它们的关系。考点分析逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词,意义为:或:两个简单命题中至少有一个成立。且:两个简单命题都成立非:对一个命题的否定 复合命题有三类:p 或 q p 且 q非 p 3、真值表:p真 假真 真 真假 真 假p真 假真 真 假假 假 假P 真 假q 假 真4、互逆命题、互否命题、互为逆否命题的概念:(1)如果第一个命题的条件(或题设)是第二个命题的结

2、论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;(2)如果一个命题的条件和结论分别是另一个命题条件的否定和结论的否定,那么这两个命题叫做互否命题;(3)如果一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,那么这两个命题叫做逆否命题。换一种表述:(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题。5、四种命题之间的相互关系如下:6、四种命题的真假有如下三条关系:(1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真;(3

3、)原命题为真,它的逆否命题一定为真。7、反证法的一般步骤:(1)假设命题的结论不正确,即假设结论的反面成立;(2)从这个假设出发,经过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确。即:否定结论推出矛盾肯定结论8、充要条件(1) 且 p,p 是 的充分不必要条件(2)p 且 ,p 是 的必要不充分条件(3) 且 ,p 是 的充要条件(4)p 且 p,p 是 的既不充分也不必要条件9、要理解“充分条件”“必要条件”的概念 当“若 p 则 q”形式的命题为真时,就记作p q,称 p 是 q 的充分条件,同时称 q 是 p 的必要条件,因此判断充分条件或必要条件就归结为判断命

4、题的真假。10、要理解“充要条件”的概念,对于符号“ ”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只须”,“,反之也真”等。11、数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质。12、从集合观点看,若 A B,则 A 是 B 的充分条件,B 是 A 的必要条件;若 AB,则A、 B 互为充要条件。13、证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性)。14、全称量词:“任意”、“全部”、“所有”存在量词:“存在一个”、“至少一个”【典型例题】例 1. 已知 是方程

5、的两根, ,则 是 的( )A. 充分但不必要条件 B. 必要但不充分条件C. 充要条件 D. 既不充分也不必要条件分析:利用韦达定理转换解: 是方程 的两根 的值分别为 说明: ,但 ,事实上只要取 , 作为反例即可说明这一点,因此选 A。判断命题为假命题可以通过举反例。例 2. 设命题甲为: ,命题乙为 ,那么甲是乙的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件分析:先解不等式再判定。解:解不等式 得 ,但 甲是乙的充分不必要条件,选 A。一般情况下,如果条件甲为 ,条件乙为当且仅当 时,甲为乙的充分条件,当且仅当 时,甲为乙的必要条件当且仅当

6、 A=B 时,甲为乙的充要条件例 3. 把下列命题改写成“若 p 则 q”的形式,并写出它们的逆命题、否命题和逆否命题。负数的平方是正数;正方形的四条边相等;全等三角形一定相似;对顶角相等;若 ,则 。解:若一个数为负数,则它的平方为正数。逆命题:若一个数的平方为正数,则这个数为负数。否命题:若一个数不为负数,则它的平方不为正数。逆否命题;若一个数的平方不为正数则这个数不为负数。若一个四边形为正方形,则它的四条边相等。逆命题:若一个四边形四条边相等,则它为正方形。否命题:若一个四边形不为正方形,则它的四条边不相等。逆否命题:若一个四边形四条边不相等,则它不为正方形。若两个三角形全等,则这两个三

7、角形一定相似。逆命题:若两个三角形相似,则这两个三角形一定全等。否命题:若两个三角形不全等,则这两个三角形一定不相似。逆否命题:若两个三角形不相似,则这两个三角形一定不全等。若两个角为对顶角,则这两个角相等。逆命题:若两个角相等,则这两个角为对顶角。否命题:若两个角不为对顶角,则这两个角不相等。逆否命题:若两个角不相等,则这两个角不为对顶角。逆命题:若 ,则 ,为假命题。否命题:若 ,则 ,为假命题。逆否命题:若 ,则 ,为真命题。例 4. 已知 p: |1 |2,q:x 22x1m 20(m0),若p 是q 的必要而不充分条件,求实数 m 的取值范围。解:由题意知:命题:若p 是 q 的必要

8、而不充分条件的等价命题,即逆否命题为:p 是 q 的充分不必要条件。p:|1 | 2 2 12 1 3 2x10q:x 22x1m 20 x(1m)x(1m)0 *p 是 q 的充分不必要条件,不等式|1 |2 的解集是 x22x1m 20(m0)解集的子集又m0不等式*的解集为 1mx1m ,m 9,实数 m 的取值范围是9, 。例 5. 写出下列命题的否定。(1)所有自然数的平方是正数;(2)任何实数 x 都是 的根;(3)对任意实数 x,存在实数 y,使 ;(4)有些质数是奇数(5)(6)解:(1)存在自然数的平方是负数或 0;(2)存在实数 x,它不是 的根;(3)存在实数 x,同时存

9、在实数 y,使(4)任何质数都不是奇数。(5)(6)例 6. 有 A、 B、 C 三 个 盒 子 , 其 中 一 个 内 放 有 一 个 苹 果 , 在 三 个 盒 子 上 各 有 一 张 纸 条 。A 盒子上的纸条写的是“苹果在此盒内”,B 盒子上的纸条写的是“苹果不在此盒内”,C 盒子上的纸条写的是“苹果不在 A 盒内”。如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在 A 盒内,则 A、B 两个盒子上的纸条写的为真,不合题意。若苹果在 B 盒内,则 A、B 两个盒子上的纸条写的为假,C 盒子上的纸条写的为真,符合题意,即苹果在 B 盒内。同样,若苹果在 C 盒内,

10、则 B、C 两盒子上的纸条写的为真,不合题意。综上,苹果在 B 盒内。【模拟试题】一、选择题(本大题共 6 小题,每小题 5 分,共 30 分)1、对以下四个命题判断正确的是( )(1)原命题:若一个自然数的末位数字为零,则这个自然数被 5 整除。(2)逆命题:若一个自然数能被 5 整除,则这自然数末位数字为零。(3)否命题:若一个自然数的末位数字不为零,则这个自然数不能被 5 整除。(4)逆否命题:若一个自然数不能被 5 整除,则这个自然数末位数字不为零。A. (1)与(3)为真,(2)与( 4)为假B. (1)与(2)为真,(3)与( 4)为假C. (1)与(4)为真,(2)与( 3)为假

11、D. (1)与(4)为假,(2)与( 3)为真2、有下列四个命题:(1)“若 ,则 x、y 互为相反数”的逆命题;(2)“若 ,则 有实根”的逆否命题;(3)“全等三角形的面积相等”的逆命题;(4)“不等边三角形的三个内角相等”的逆否命题。其中真命题为( )A. (1)与(3) B. (2)与(3)C. (1)与(2) D. (2)与(4)3、如果 A 是 B 的充分而不必要条件,那么 A 是 B 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4、已知 , , ,其中 为正实数,则同时成立是 成立的( )A. 充分非必要条件B. 必要非充分条件C. 充

12、要条件D. 既非充分也不必要条件5、“ ”是“ ”的( )A. 充分条件 B. 必要条件 C. 充要条件 D. 既不充分也不必要条件6、若 A 是 B 成立的充分条件,D 是 C 成立的必要条件,C 是 B 成立的充要条件,则 D是 A 成立的( )A. 充分条件 B. 必要条件 C. 充要条件 D. 既不充分也不必要条件二、填空题(本题共 4 小题,每小题 5 分,共 20 分)7、命题“若 且 ,则 ”的逆命题是_;否命题是:_;逆否命题是_。以上四个命题中,真命题有_个。8、从“ ”、“ ”与“ ”中选出适当的符号填空:(U 为全集,A 、B 是 U 的子集)(1)A=B_(2) _9、

13、“对任意实数 ,不等式 成立,则 ”的逆命题,否命题和逆否命题中,真命题共有_个。10、已知 P、Q 都是 R 的必要条件,S 是 R 的充分条件, Q 是 S 的充分条件,则 P 是 Q的_条件。三、解答题(本大题共 4 题,共 50 分)11、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)若 ,则 ;(2)若两个三角形全等,则两三角形的面积相等;(3)等腰三角形两底角相等;(4)若 ,则 。12、已知 p: ,q: ,若 是 的必要不充分条件,求实数 m 的取值范围。13、已知 a、b、c 是一组勾股数(即 ),求证:a 、b、c 不可能都是奇数。14、已知关于 x 的方

14、程 ,求使方程有两个正实数根的充要条件。【试题答案】1、C2、C(提示:(1)、(3)先写出逆命题和否命题,再判断。(2) 、(4)直接判断原命题)3、B提示: A 但 B AB 但 B4、C提示:显然,从对称性不妨设 ,则 ,故为充要条件。5、解:在这里“ ”是条件,而所以但因此“ ”是“ ”故选 B。6、解: A 是 B 的充分条件 D 是 C 成立的必要条件 C 是 B 成立的充要条件 由得 由得 D 是 A 成立的必要条件,选 B7、若 ,则 且 ;若 或 ,则 ;若 ,则 或 ;28、(1) ;(2)9、3提示:逆:对任 ,若 ,且则不等式 恒成立否:对任 ,若不等式 不恒成立则逆否

15、:对任意实数若则不等式 不恒成立。10、必要提示:11、逆命题:(1)若 则: (假)(2)若两三角形的面积相等,则两个三角形全等(假)(3)若一个三角形两底角相等则为等腰三角形(真)(4)若 ,则 (真)否命题:(1)若 则(2)若两个三角形不全等,则两三角形的面积不相等(假)(3)若一个三角形两底角不相等则不是等腰三角形(真)(4)若 则 (真)逆否命题:(1)若 则 (真)(2)若两三角形的面积不相等,则两个三角形不全等(真)(3)若一个三角形不是等腰三角形则两底角不相等(真)(4)若 ,则 (假)12、解:p: p: ,q: : 是 的必要不充分条件 即 是 的充分不必要条件故有 解得 因此,所求实数 m 的取值范围是13、证明:假设 a、b、c 都是奇数是一组勾股数都是奇数也都是奇数是偶数这样 式的左边是偶数,右边却是奇数,得出自相矛盾的结论。不可能都是奇数14、本题还可以从二次函数的图象及方程根的分布情况来探求满足题意的充要条件。设函数 ,其图象为开口向上的抛物线,方程 有两个正实数根的充要条件是:即解得:所以所求的充要条件是

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。