1、 星光洒落满河塘,远处谁家孤灯明? 冷月无声2012 年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分: 150 分 考试时间:120 分钟)准考证号 姓名 座位号 注意事项:1全卷三大题,26 小题,试卷共 4 页,另有答题卡2答案一律写在答题卡上,否则不能得分3可直接用 2B 铅笔画图一、选择题(本大题有 7 小题,每小题 3 分,共 21 分.每小题都有四个选项,其中有且只有一个选项正确)1 2 的相反数是A2 B2 C2 D122下列事件中,是必然事件的是A. 抛掷 1 枚硬币,掷得的结果是正面朝上B. 抛掷 1 枚硬币,掷得的结果是反面朝上C. 抛掷 1 枚硬币,掷得的结果
2、不是正面朝上就是反面朝上D抛掷 2 枚硬币,掷得的结果是 1 个正面朝上与 1 个反面朝上3图 1 是一个立体图形的三视图,则这个立体图形是A圆锥 B球C圆柱 D三棱锥4某种彩票的中奖机会是 1%,下列说法正确的是A买 1 张这种彩票一定不会中奖B买 1 张这种彩票一定会中奖C买 100 张这种彩票一定会中奖D当购买彩票的数量很大时,中奖的频率稳定在 1%5若二次根式 有意义,则 x 的取值范围是x 1Ax 1 Bx 1C x1 Dx 16如图 2,在菱形 ABCD 中,AC、BD 是对角线,若BAC 50,则ABC 等于A40 B50C 80 D1007已知两个变量 x 和 y,它们之间的
3、3 组对应值如下表所示.x 1 0 1y 1 1 3CB图2DA图1俯俯俯俯俯俯俯俯俯星光洒落满河塘,远处谁家孤灯明? 冷月无声则 y 与 x 之间的函数关系式可能是Ayx By2x 1 Cyx 2x1 Dy3x二、填空题(本大题有 10 小题,每小题 4 分,共 40 分)8计算: 3 a2a 9已知A40,则A 的余角的度数是 10计算: m 3m2 . 11在分别写有整数 1 到 10 的 10 张卡片中,随机抽取 1 张卡片,则该卡片上的数字恰好是奇数的概率是 12如图 3,在等腰梯形 ABCD 中,AD BC,对角线 AC 与 BD 相交于点 O,若 OB3,则 OC 13 “x 与
4、 y 的和大于 1”用不等式表示为 .14如图 4,点 D 是等边ABC 内一点,如果ABD 绕点 A 逆时针旋转后能与ACE 重合,那么旋转了 度.15五边形的内角和的度数是 16已知 ab2,ab1,则 3aab3b ;a2 b2 .17如图 5,已知ABC 90,ABr,BC ,半径为 rr2的 O 从点 A 出发,沿 AB C 方向滚动到点 C 时停止.请你根据题意,在图 5 上画出圆心 O 运动路径的示意图;圆心 O 运动的路程是 .三、解答题(本大题有 9 小题,共 89 分)18 (本题满分 18 分)(1 )计算:4 (2)(1) 240; (2 )画出函数 yx 1 的图象;
5、(3 )已知:如图 6,点 B、F、C 、E 在一条直线上,AD,ACDF ,且 AC DF.求证:ABC DEF.19 (本题满分 7 分)解方程组: 20 (本题满分 7 分)已知:如图 7,在ABC 中,C90,点 D、E 分别在边 AB、AC上,DE BC,DE 3, BC9.图6AB CDF E图4AB CDE图3ABDCO图7ABCDE图5A BCO星光洒落满河塘,远处谁家孤灯明? 冷月无声(1 )求 的值;ADAB(2 )若 BD10,求 sinA 的值. 21.(本题满分 7 分)已知 A 组数据如下:0, 1, 2,1,0,1,3.(1)求 A 组数据的平均数;(2 )从 A
6、 组数据中选取 5 个数据,记这 5 个数据为 B 组数据. 要求 B 组数据满足两个条件:它的平均数与 A 组数据的平均数相等;它的方差比 A 组数据的方差大.你选取的 B 组数据是 ,请说明理由.【注:A 组数据的方差的计算式是SA2 (x1 )2(x 2 )2(x 3 )2( x4 )2(x 5 )2(x 6 )2(x 7 )2】17 x x x x x x x22 (本题满分 9 分)工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需用x 小时,乙车床需用 (x21)小时,丙车床需用(2x2)小时 . (1 )单独加工完成这种零件,若甲车床所用的时间是丙车床的 ,求乙车床单独加2
7、3工完成这种零件所需的时间;(2 )加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同?请说明理由.23 (本题满分 9 分)已知:如图 8,O 是ABC 的外接圆,AB 为O 的直径,弦 CD 交AB 于 E,BCDBAC . (1 )求证:AC AD;(2 )过点 C 作直线 CF,交 AB 的延长线于点 F,若BCF30,则结论“CF 一定是O 的切线”是否正确?若正确,请证明;若不正确,请举反例.24 (本题满分 10 分)如图 9,在平面直角坐标系中,已知点 A(2,3) 、B(6,3),连结 AB. 如果点 P 在直线 yx1 上,且点 P 到直线 AB 的距离小于 1,那么
8、称点 P 是线段 AB的“邻近点” (1)判断点 ( , ) 是否是线段 AB 的“邻近点” ,并说明理由;72 52(2 )若点 Q (m,n)是线段 AB 的“邻近点” ,求 m 的取值范围xyB42642O图9A 图8F BCEDO A星光洒落满河塘,远处谁家孤灯明? 冷月无声25 (本题满分 10 分)已知 ABCD,对角线 AC 与 BD 相交于点 O,点 P 在边 AD 上,过点P 分别作 PEAC 、PFBD ,垂足分别为 E、F,PEPF(1)如图 10,若 PE ,EO1,求EPF 的度数;3(2)若点 P 是 AD 的中点,点 F 是 DO 的中点,BF BC 3 4,求
9、BC 的长226 (本题满分 12 分)已知点 A(1,c)和点 B (3,d )是直线 yk 1xb 与双曲线y (k 20 )的交点k2x(1)过点 A 作 AMx 轴,垂足为 M,连结 BM若 AMBM,求点 B 的坐标;(2)设点 P 在线段 AB 上,过点 P 作 PEx 轴,垂足为 E,并交双曲线y (k 20 )于点 N当 取最大值时,若 PN ,求此时双曲线的解析k2x PNNE 12式2012 年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1解答只列出试题的一种或几种解法如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2评阅试卷,要坚持每题
10、评阅到底,不能因考生解答中出现错误而中断对本题的评阅如果考生的解答在某一步出现错误,影响后续部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后续部分应得分数的一半;3解答题评分时,给分或扣分均以 1 分为基本单位一、选择题(本大题共 7 小题,每小题 3 分,共 21 分)题号 1 2 3 4 5 6 7选项 A C A D B C B二、填空题(本大题共 10 小题,每题 4 分,共 40 分)E F图10AB CDOP星光洒落满河塘,远处谁家孤灯明? 冷月无声8. a. 9. 50. 10. m. 11. . 12. 3. 13. xy1. 14. 60.121
11、5. 540. 16. 5; 6. 17. ;2r.三、解答题(本大题共 9 小题,共 89 分)18 (本题满分 18 分)(1 )解:4 (2) (1) 240211 4 分21 5 分1. 6 分(2)解:正确画出坐标系 8 分正确写出两点坐标 10 分画出直线 12 分(3 )证明: AC DF , 13 分 ACB DFE. 15 分又 AD , 16 分ACDF, 17 分 ABC EDF. 18 分19 (本题满分 7 分)解 1: ,得 1 分5x5, 2 分x1. 4 分将 x1 代入 ,得3y4, 5 分y1 6 分 7 分解 2:由得 y43x 1 分将代入 ,得2x(4
12、 3x) 1 2 分得 x1. 4 分将 x1 代入 ,得 y431 5 分1 6 分 7 分20 (本题满分 7 分)(1 )解: DEBC , ADEABC. 1 分 . 2 分ADAB DEBCABCDEGAB CDF E星光洒落满河塘,远处谁家孤灯明? 冷月无声 . 3 分ADAB 13(2 )解 1: ,BD 10,ADAB 13 4 分ADAD 10 13 AD5 5 分经检验,符合题意. AB15.在 RtABC 中, 6 分sinA . 7 分BCAB 35解 2: ,BD10,ADAB 13 4 分ADAD 10 13 AD5 5 分经检验,符合题意. DEBC,C90 AE
13、D90在 Rt AED 中, 6 分sinA . 7 分EDAD 35解 3:过点 D 作 DGBC,垂足为 G. DGAC .ABDG . 4 分又 DEBC,四边形 ECGD 是平行四边形. DECG. 5 分 BG6.在 RtDGB 中, 6 分 sinBDG . 7 分BDGB 35 sinA .3521 (本题满分 7 分)(1)解:A 组数据的平均数是 1 分0 1 2 1 0 1 370. 3 分(2)解 1:选取的 B 组数据: 0,2,0,1,3. 4 分 B 组数据的平均数是 0. 5 分 B 组数据的平均数与 A 组数据的平均数相同. S B2 ,S A2 . 6 分14
14、5 167 .7 分145 167 B 组数据:0,2,0, 1,3.星光洒落满河塘,远处谁家孤灯明? 冷月无声解 2:B 组数据:1, 2,1,1,3. 4 分 B 组数据的平均数是 0. 5 分 B 组数据的平均数与 A 组数据的平均数相同. S A2 , SB2 . 6 分 167 165 7 分165 167 B 组数据:1,2,1, 1,3. 22 (本题满分 9 分)(1 )解:由题意得, x (2x2) 1 分23 x4. 2 分 x 2116115( 小时). 3 分答:乙车床单独加工完成这种零件所需的时间是 15 小时. 4 分(2)解 1:不相同. 5 分若乙车床的工作效率
15、与丙车床的工作效率相同,由题意得, 6 分 . 7 分1x2 1 12x 2 . 1x 1 12 x1. 8 分经检验,x1 不是原方程的解. 原方程无解. 9 分答:乙车床的工作效率与丙车床的工作效率不相同.解 2:不相同. 5 分若乙车床的工作效率与丙车床的工作效率相同,由题意得, 6 分x212x2. 7 分解得,x1. 8 分此时乙车床的工作时间为 0 小时,不合题意. 9 分答:乙车床的工作效率与丙车床的工作效率不相同. 23 (本题满分 9 分)(1 )证明 1:BCD BAC, . 1 分 BC BD AB 为 O 的直径, ABCD , 2 分CE DE. 3 分 ACAD .
16、 4 分证明 2:BCDBAC, . 1 分 BC BD AB 为O 的直径, . 2 分 BCA BDAGAODECBF星光洒落满河塘,远处谁家孤灯明? 冷月无声 . 3 分 CA DA ACAD . 4 分证明 3: AB 为O 的直径, BCA 90. 1 分 BCD+DCA90, BAC +CBA90BCDBAC,DCACBA 2 分 . 3 分 CA DA ACAD . 4 分(2)解 1:不正确. 5 分连结 OC.当 CAB20时, 6 分 OCOA,有 OCA20 . ACB90, OCB70. 7 分又BCF30,FCO100, 8 分 CO 与 FC 不垂直. 9 分 此时
17、 CF 不是O 的切线. 解 2:不正确. 5 分连结 OC.当 CAB20时, 6 分 OCOA,有 OCA20 . ACB90, OCB70. 7 分又BCF30,FCO100, 8 分在线段 FC 的延长线上取一点 G,如图所示,使得COG20.在OCG 中, GCO80, CGO80. OGOC. 即 OG 是O 的半径. 点 G 在O 上. 即直线 CF 与圆有两个交点. 9 分 此时 CF 不是O 的切线.解 3:不正确. 5 分连结 OC.当 CBA70时, 6 分 OCB70. 7 分又BCF30,FCO100, 8 分 CO 与 FC 不垂直. 9 分 此时 CF 不是O 的
18、切线.24 (本题满分 10 分)(1)解:点 ( , ) 是线段 AB 的“邻近点”. 1 分72 52 1 , 点 ( , )在直线 yx 1 上. 2 分72 52 72 52点 A 的纵坐标与点 B 的纵坐标相同,星光洒落满河塘,远处谁家孤灯明? 冷月无声 ABx 轴. 3 分 ( , ) 到线段 AB 的距离是 3 ,72 52 523 1, 4 分52 12 ( , )是线段 AB 的“邻近点 ”.72 52(2 )解 1:点 Q(m,n )是线段 AB 的“邻近点” , 点 Q(m,n) 在直线 yx 1 上, nm1. 5 分 当 m4 时, 6 分有 nm13.又 ABx 轴
19、, 此时点 Q(m,n)到线段 AB 的距离是 n3. 7 分0n31. 4m5. 8 分 当 m4 时, 9 分有 nm13.又 ABx 轴, 此时点 Q(m,n)到线段 AB 的距离是 3n.03n1. 3m4. 10 分综上所述, 3m5.解 2:点 Q(m,n )是线段 AB 的“邻近点” , 点 Q(m,n) 在直线 yx 1 上, nm1. 5 分又 ABx 轴, Q(m ,n)到直线 AB 的距离是 n3 或 3n, 6 分 当 0n31 时, 7 分即 当 0m131 时,得 4m5. 8 分 当 03n1 时, 9 分有 03(m1)1 时,得 3m4. 10 分综上所述,3
20、m5.25 (本题满分 10 分)(1 )解 1:连结 PO , PE PF,POPO,PE AC、PFBD, Rt PEORtPFO. EPO FPO. 1 分在 Rt PEO 中, 2 分tanEPO , 3 分EOPEFPCBOEDA星光洒落满河塘,远处谁家孤灯明? 冷月无声 EPO 30. EPF 60. 4 分解 2:连结 PO ,在 Rt PEO 中, 1 分PO 2.3 1 sinEPO .2 分EOPO 12 EPO30. 3 分在 Rt PFO 中,cosFPO ,FPO 30.PFPO EPF 60. 4 分解 3:连结 PO , PEPF,PEAC、PF BD,垂足分别为 E、F, OP 是EOF 的平分线. EOPFOP . 1 分在 Rt PEO 中, 2 分tanEOP 3 分PEEO 3 EOP60, EOF120.又PEOPFO 90, EPF 60.