钉子板上的多边形 教学设计.doc

上传人:hw****26 文档编号:3143807 上传时间:2019-05-23 格式:DOC 页数:4 大小:33.50KB
下载 相关 举报
钉子板上的多边形  教学设计.doc_第1页
第1页 / 共4页
钉子板上的多边形  教学设计.doc_第2页
第2页 / 共4页
钉子板上的多边形  教学设计.doc_第3页
第3页 / 共4页
钉子板上的多边形  教学设计.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、钉子板上的多边形教学内容:五年级上册 p108-109 探索规律“钉子板上的多边形”教学目标:1、使学生探索并发现钉子板上围城的多边形的面积,与围城的多边形边上的钉子数、多边形内部钉子数之间的关系,并尝试用字母式子表示关系。2、使学生经历探索钉子板上围城的多边形面积与相关钉子数间的关系的过程,体会规律的复杂性和全面性,体会归纳思维,体会用字母表示关系的简洁性,发展观察、比较、推理、综合和抽象、概括等思维能力。3、使学生获得探索规律成功的体验,树立学习数学的自信心,感受数学规律的奇妙,对数学产生好奇心,提高学习数学的兴趣和积极性。教学重点:探索钉子板上多边形的面积与多边形边上钉子数、内部钉子数之

2、间的关系教学难点:综合、归纳多边形的面积与多边形边上钉子数、内部钉子数之间的关系教学过程:课前活动:每个小组里发一个钉子板实物。并激发他们在钉子板上围多边形。玩出精彩!有一位数学家就在小小的钉子板上玩出了精彩。皮克定理是世界上的最重要的 100 个数学定理之一。今天我们也走进钉子板的世界去看一看。一:创设情境,引出问题今天我们研究钉子板上的多边形(出示课题)师:为了研究的方便,我们通常用这样的点阵图代替钉子板。每相邻两个钉子之间的距离都是 1cm,相邻 4 个点围成一个面积是 1cm。你们看现在点阵图上的点子可以怎么分分类?边上的钉子,图形内的钉子、图形外的钉子出示课件:钉子板上的多边形,共

3、3 个不同的多边形。问题 1:你想研究钉子板上的多边形的哪些项目呢?生:多边形的面积、面积的大小和什么有关?问题 2:你猜想下,钉子板上的多边形的面积会有什么因素有关?生:钉子数、多边形边上的钉子数、多边形内的钉子数师小结:这些多边形的面积是否和以上的各个因素有关呢?下面我们就来研究下这些图形。二:自主研究,得出猜想问题 1:你想怎样研究?生:画图、计算、数师:很好,下面我们就来研究影响多边形面积的因素,我们从最简单的一组图形开始。研究 1:独立完成“钉子板上的多边形”研究单 11、学生通过算一算、数一数,完成研究单 1;2、师展示学生的研究单,说一说你的研究过程;学生自己介绍表格中数据的由来

4、。3、观察分析表格中的数据,你有什么发现?同桌互相说一说个别的汇报4、通常我们用 S 表示面积,n 表示多边形边上的钉子数,你能用一个式子表示上面得到的关系吗?S=n2小结:根据学生的研究和汇报,初步得出多边形的面积等于多边形边上的钉子数除以 2.三、质疑验证,归纳结论S=n2 这个规律是否对钉子板上所有的多边形都成立呢?应该怎么办?验证1、 完成研究单 1 上面的第二题的两个,并填表。2、 出示课件上两个图形,再次验证。3、 通过两次的验证,你有什么发现?发现 S=n2 在其它的多边形中不成立。4、 思考:为什么呢?引导学生再次观察四个图形,你有什么发现?同桌互相说一说,再个别发表看法。得出

5、:四个多边形内部都只有一个点。5、 再次验证:每位学生再提供的备用点子图上画一个内部只有一个点的多边形,计算并观察多边形的面积和边上的钉子数是否符合 S=n2?6、 谁能完整的把刚才的规律说一说?小结:多边形的面积不仅仅和边上的钉子数有关,还和多边形内的钉子数有关。多边形内的钉子数用 a 表示,上面的规律可以归纳为: 当 a=1 时,S=n2数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。-高斯四、合作探究,得出规律引入:多边形内有一枚钉子的情况,同学们已经研究过了,而且找出了一般规律,那下面你们想研究什么呢?多边形内有 2 枚钉子的时候,面积和钉子数的关系。

6、合作交流,完成研究单 1 的第二题。1、 首先独立画一个内部两个点的多边形,得出 S 和 n;2、 同桌交流,完善表格。3、 观察表格中的 S 与 n 的 值,再互相说一说,你有什么发现?4、 个别同学汇报发现,其他同学根据自己的图形验证发现是否正确。小结:多边形的面积不仅仅和边上的钉子数有关,还和多边形内的钉子数有关。多边形内的钉子数用 a 表示,上面的规律可以归纳为: 当 a=2 时,S=n2+1五、推想、验证,得出规律引入:当 a=1 时,S=n2当 a=2 时,S=n2+1猜想:当 a=3、4、5时,S 与 n 之间有什么关系呢?学生猜想:当 a=3 时,S=n2+2当 a=4 时,S

7、=n2+3学生验证:分组研究,分成 4 人小组1、组内确定研究主题:a=3 或者 a=4.2、三人每人分别画一个,并且得出 S 与 n 的值,第四个人汇总并汇报小组的研究成果。3、观察比较分析,研究的结果和猜想的结论是否一致?小 结: 根据刚才同学们的研究,我们得到了这些规律当 a=1 时,S=n2当 a=2 时,S=n2+1当 a=3 时,S=n2+2当 a=4 时,S=n2+3请你说一说当 a=5 时,S= 当 a=10 时,S= 问题:你能用一个含有 S、n、a 的式子概括出以上所有的规律吗? S=n2+a-1 六:拓展研究,形成体系出示:钉子板上的多边形实物图形,观察这些多边形有什么特

8、点?内部的钉子数为 0. 即 a=0问题:当 a=0 时,上面的规律还成立吗?你是怎么想的?说一说你的想法和结论。七:总结收获,形成方法。说明:我们今天研究的规律,就是数学上著名的皮克定理(适当介绍)。有兴趣的同学,可以在网络上或书籍里了解皮克定理。如果有进一步认识的要求,那记住这本书:闵酮鹤的著作格点和面积,以后有兴趣、有条件了,可以去阅读。 回顾过程,交流体会。提问:回顾刚才探索和发现规律的过程,你有什么体会和收获?追问:还有什么疑问吗?小结:今天我们一起研究了钉子板上多边形面积与钉子数之间的关系。在研究的过程中,我们从简单情形入手,通过画一画、数一数、算一算等方法,经历观察、比较、猜想、验证等活动,发现了规律。从上面的过程中我们发现,要从各种不同情况的多边形中研究,要善于发现不同多边形中的共同点,比如形状、大小不同的多边形中都有几个钉;发现的不同关系式中的共同规律等。在探索规律时,一定要注意认真观察、反复比较,举例验证。表示数学规律一般用含有字母的式子,它具有简洁、明了、易记的特点。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 建筑建材

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。