《22.2二次函数与一元二次方程》说课稿.docx

上传人:11****ws 文档编号:3157828 上传时间:2019-05-23 格式:DOCX 页数:6 大小:80.93KB
下载 相关 举报
《22.2二次函数与一元二次方程》说课稿.docx_第1页
第1页 / 共6页
《22.2二次函数与一元二次方程》说课稿.docx_第2页
第2页 / 共6页
《22.2二次函数与一元二次方程》说课稿.docx_第3页
第3页 / 共6页
《22.2二次函数与一元二次方程》说课稿.docx_第4页
第4页 / 共6页
《22.2二次函数与一元二次方程》说课稿.docx_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、22.2 二次函数与一元二次方程说课稿一、教材分析1、教材的地位和作用 二次函数与一元二次方程是人教版九年级上册第 22 章第二节的教学内容.它既是一次函数与一元一次方程关系的延续.又为高中数学求一元二次不等式的解集以及三个“二次”的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元

2、二次方程关系的过程,认识到事物的互相联系与转化. 情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学.以学生活动为主线,引导学生在观察、操作、合作、交

3、流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、 合作交流、 归纳总结完成本节课的教学.五、教学过程(一)复习引入活动 1:问题 1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题 2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数 y=ax2+bx+c(a0)的函数值 y=0 时,则得到了一个一元二次方程 ax2+bx+c=0(a0);若把一元二次方程 ax2+bx+c=0(a0)中的常量 0 变

4、为变量 y,则得到二次函数 y=ax2+bx+c(a0).设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动 2:问题:如图,以 40ms 的速度将小球沿与地面成 30角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度 h(单位:m)飞行时间 t(单位:s)之间具有函数关系:h= 20t-5t 2 问:(1)小球的飞行高度能否达到 15m?如能,需要多少飞行时间? (2)小球的飞行高度能否达到 20m?如能,需要多少飞行时间? (3)球的飞行高度能否达到 20.5 m?(4)小球从飞出到落地要用多少时间?师生活动:第(1)问师生共

5、同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析.第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到 20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动 3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单位对二次函数与 x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示结果.二次函数的图象与 x 轴交点横坐标与一元二次方程根的关系:(1) “数”

6、:二次函数 y=ax2+bx+c(a0)的函数值 y=0 时相应的自变量的值即为一元二次方程 ax2+bx+c=0(a0)的根;(2) “形”:二次函数 y=ax2+bx+c(a0)的图象与 x 轴交点的横坐标.即为一元二次方程ax2+bx+c=0(a0)的根.设计的意图:通过学生合作交流,得出二次函数 y=ax2+bx+c(a0)的图象和 x 轴交点的横坐标与一元二次方程 ax2+bx+c=0(a0)的根的关系,同时培养学生合作学习的能力.活动 4:观察发现(1)观察二次函数y=x 2+x-2,y=x 2-6x+9,y=x 2-x+1 的图象,回答下列问题: 函数与 x 轴的交点的个数是:

7、个 个 个.函数与 x 轴交点的横坐标为: . 2y 21yx269yx(2)已知一元二次方程x 2+x-2=0,x 2-6x+9=0,x 2-x+1=0,则一元二次方程根的情况: 0,有 根 0,有 根, 0,有 根.一元二次方程的解是: , , .思考:二次函数 y=ax2+bx+c(a0)与 x 轴交点情况与一元二次方程 ax2+bx+c=0(a0)的根的情况有怎样的联系?师生活动:老师展示问题,学生观察填空.通过观察(1)与(2)的结果,对思考问题进行合作讨论.设计意图:通过学生讨论、观察,得出判别式和二次函数与 x 轴交点个数的情况的关系.并让学生掌握特殊到一般的学习方法.x0y(三

8、)归纳新知二次函数与一元二次方程的关系:二次函数 y=ax2+bx+c(a0)的图象和 x 轴交点的情况一元二次方ax2+bx+c=0(a0)的根的情况一元二次方程 ax2+bx+c=0(a0)根的判别式 =b 2-4ac 的情况有两个相等的实数根分别为:x 1=x2=x0 b2 4ac 0师生活动:通过以上环节的探究,教师指导学生思考归纳,并展示结果。设计意图:培养学生语言表述能力,及用表格法归纳知识的能力。(四)运用新知1、方程 x2-5x+6=0 有 个根,它们是 ,所以函数 y= x2-5x+6 的图象与 x 轴有 个交点,其交点的横坐标为 .2、若抛物线 y=ax2+bx+c 与 x

9、 轴只有一个交点且交点的横坐标为 6,则 ax2+bx+c=0(a0)的根为 。3、与 x 轴没有交点的抛物线是( )A. y = 2x2 3 B. y=2x 2 + 3 C. y= x 2 3x D. y=2(x+1) 234、利用函数图象求方程 x2-2x-2=0 的实数根(结果保留小数点后一位).师生活动:第 1、2、3 小题学生回答,教师评价。第 4 小题老师通过分析并引导学生展示图象,然后利用几何画板演示得出答案。设计意图:对本节课重点内容进行现场检测,及时了解教学目标的达成情况.同时又让学生进一步体会“数形结合”思想,以及函数与方程互相转化的思想在解决实际生活中的问题的应用.(五)

10、课堂小结谈谈本节课的收获和困惑!设计意图:让学生养成自主回顾,梳理知识,提炼方法的良好习惯.(六)布置作业必做题: 1、求下列二次函数图象与 x 轴交点的横坐标.(1)y=x 2+6x-9; (2)y=9-4x 2选做题 : 2、已知一元二次方程 x2+px+q+1=0 的一根为 2.(1)求 q 关于 p 的关系式;(2)求证:抛物线 y=x2+px+q 与 x 轴有两个交点;设计意图:采用分层布置作业的方法,达到因材施教的目的.六、教学反思在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式.本着以发展学生的思维能力为主,注重能力的培养与提高,充分发挥教师主导作用和学生的主作体用,调动学生的积极性和主动性,使他们能够在独立思考与合作学习交流中解决学习中的问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。