二次函数重点难点总结.doc

上传人:11****ws 文档编号:3164800 上传时间:2019-05-23 格式:DOC 页数:6 大小:795.98KB
下载 相关 举报
二次函数重点难点总结.doc_第1页
第1页 / 共6页
二次函数重点难点总结.doc_第2页
第2页 / 共6页
二次函数重点难点总结.doc_第3页
第3页 / 共6页
二次函数重点难点总结.doc_第4页
第4页 / 共6页
二次函数重点难点总结.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、初中二次函数知识点总结一、二次函数概念:1二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 2yaxbca,0a这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零二次函数的定义域是全0bc,体实数2. 二次函数 的结构特征:2yaxbc 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是 2xx 是常数, 是二次项系数, 是一次项系数, 是常数项bc, bc二、二次函数的基本形式1. 二次函数基本形式: 的性质:2yaxa 的绝对值越大,抛物线的开口越小。2. 的性质:2yaxc上加下减。3. 的性质:2yaxh左加右减。的符号 开口方向 顶点坐标 对称轴

2、 性质0a向上 0,轴y时, 随 的增大而增大; 时,0xyx0x随 的增大而减小; 时, 有最小y值 0向下 ,轴时, 随 的增大而减小; 时,随 的增大而增大; 时, 有最大xx值 的符号 开口方向 顶点坐标 对称轴 性质0a向上 0c,轴y时, 随 的增大而增大; 时,0xyx0x随 的增大而减小; 时, 有最小y值 c向下 ,轴时, 随 的增大而减小; 时,随 的增大而增大; 时, 有最大x0x值 的符号 开口方向 顶点坐标 对称轴 性质0a向上 0h,X=h时, 随 的增大而增大; 时,xhyxxh随 的增大而减小; 时, 有最小y值 04. 的性质:2yaxhk三、二次函数图象的平

3、移1. 平移步骤:方法一: 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ;2yaxhkhk, 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下:2yax,2. 平移规律在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”hk概括成八个字“左加右减,上加下减” 方法二: 沿 轴平移: 向上(下)平移 个单位, 变成cbxay2ymcbxay2(或 )mcbxa2 沿轴平移:向左(右)平移 个单位, 变成cxy2 cxy2(或 )ba)()( mxbxy)()(2四、二次函数 与 的比较2yaxhk2ac从解析式上看, 与 是两种不同的表达形式,后者通过配方可以得到前yxb者

4、,即 ,其中 224bacyax 242achk,五、二次函数 图象的画法2yxbc0a向下 0h,X=h 时, 随 的增大而减小; 时,xhyxxh随 的增大而增大; 时, 有最大y值 0的符号 开口方向 顶点坐标 对称轴 性质0a向上 hk,X=h时, 随 的增大而增大; 时,xhyxxh随 的增大而减小; 时, 有最小y值 k向下 ,X=h时, 随 的增大而减小; 时,随 的增大而增大; 时, 有最大yxxh值 五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口方向、2yaxbc2()yaxhk对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与

5、轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 , (若与y0c,0c, h, 102x轴没有交点,则取两组关于对称轴对称的点).x画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.xy六、二次函数 的性质2yaxbc1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 0 2bxa24bac,当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最2bxayxyx2bxay小值 4c2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 当 时,0a 2bxa24bac,2bxa随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 yx

6、2bxay2xy4c七、二次函数解析式的表示方法1. 一般式: ( , , 为常数, ) ;2yaxbcbc0a2. 顶点式: ( , , 为常数, ) ;()hkahk3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).12x01x2x注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示二次函数解析4bc式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 中, 作为二次项系数,显然 2yxbca0a 当 时,抛物线开口向上, 的值越大,开口越小

7、,反之 的值越小,开口越大;0 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越大a总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决定开口的大aa小2. 一次项系数 b在二次项系数 确定的前提下, 决定了抛物线的对称轴ab 在 的前提下,0当 时, ,即抛物线的对称轴在 轴左侧;02y当 时, ,即抛物线的对称轴就是 轴;ba当 时, ,即抛物线对称轴在 轴的右侧0b02ay 在 的前提下,结论刚好与上述相反,即a当 时, ,即抛物线的对称轴在 轴右侧;当 时, ,即抛物线的对称轴就是 轴;0b02ay当 时, ,即抛物线对称轴在 轴的左侧总结起来

8、,在 确定的前提下, 决定了抛物线对称轴的位置b的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,概括的说就是abax2y0aby0ab“左同右异”总结:3. 常数项 c 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;0yxy 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ; 0 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负总结起来, 决定了抛物线与 轴交点的位置c总之,只要 都确定,那么这条抛物线就是唯一确定的ab,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式

9、必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;x4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于 轴对称x关于 轴对称后,得到的解析式是 ; 2yabcx 2yaxbc关于 轴对称后,得到的解析式是 ;xhk hk2. 关于 轴对称y关于 轴对称后,得到的解析式是 ; 2abcy 2yaxbc关于 轴对称后,得到的

10、解析式是 ;yxhk hk3. 关于原点对称关于原点对称后,得到的解析式是 ;2abc 2yaxbc关于原点对称后,得到的解析式是 ;2yaxhk 2yaxhk4. 关于顶点对称(即:抛物线绕顶点旋转 180)关于顶点对称后,得到的解析式是 ;2bc22bca关于顶点对称后,得到的解析式是 yaxhk yaxhk5. 关于点 对称 mn,关于点 对称后,得到的解析式是2yaxhkn, 2yaxhmnk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不a变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式

11、已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 轴交点情况):x一元二次方程 是二次函数 当函数值 时的特殊情况.20axbc2yabc0y图象与 轴的交点个数: 当 时,图象与 轴交于两点 ,其中的 是一元二次24x120AxB, , , 12()x12x,方程 的两根这两点间的距离 . 20axbca214bac 当 时,图象与 轴只有一个交点; x 当 时,图象与 轴没有交点 .当 时,图象落在 轴的上方,无论 为任何实数,都有 ;10ax0y当 时,图象

12、落在 轴的下方,无论 为任何实数,都有 2 x 2. 抛物线 的图象与 轴一定相交,交点坐标为 , ; 2yaxbcy(0)c3. 二次函数常用解题方法总结: 求二次函数的图象与 轴的交点坐标,需转化为一元二次方程;x 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数 中 , , 的符号,或由二次函数中 , , 的符2yaxbcabcabc号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 轴的x一个交点坐标,可由对称性求出另一个交点坐标. 与二次函数有关的还有二次三项式,二次三项式

13、 本身就是所含字母 的二次函数;2(0)axbc下面以 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0a二次函数图像参考:抛物线与 轴有x两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0抛物线与 轴只有一个交点二次三项式的值为非负 一元二次方程有两个相等的实数根抛物线与 轴无x交点二次三项式的值恒为正 一元二次方程无实数根.y=2(x-4)2-3y=2(x-4)2y=2x2y=x22y=2x2y=x2y=-2x2y= -x2y= -x22y=2x2-4y=2x2+2y=2x2y=3(x+4)2y=3(x-2)2y=3x2y=-2(x+3)2 y=-2(x-3)2y=-2x2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。