分形几何.doc

上传人:11****ws 文档编号:3185910 上传时间:2019-05-24 格式:DOC 页数:9 大小:86KB
下载 相关 举报
分形几何.doc_第1页
第1页 / 共9页
分形几何.doc_第2页
第2页 / 共9页
分形几何.doc_第3页
第3页 / 共9页
分形几何.doc_第4页
第4页 / 共9页
分形几何.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、分形几何 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 分形几何的产生客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有

2、特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时所使用的尺度。如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,

3、但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于 1

4、到 2 之间。这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在 1975、1977 和1982 年先后用法文和英文出版了三本书,特别是分形形、机遇和维数以及自然界中的分形几何学,开创了新的数学分支分形几何

5、学。分形几何的内容分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确

6、定维数。但通常人们习惯于整数的维数。分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919 年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。维数和测量有着密切的关系,下面我们举例说明一下分维的概念。当我们画一根直线,如果我们用 0 维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为

7、1(大于 0、小于 2)。对于我们上面提到的“寇赫岛”曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算“寇赫岛”曲线的维数是 1.2618。分形几何学的应用分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成

8、。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1。在某些电化学反应中,电极附近成绩的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈,至少有十几次分支的层次,可以用分形几何学去测量。有人研究了某些云彩边界的几何性质,发现存在从 1 公里到 1000 公里的无标度区。小于 1

9、公里的云朵,更受地形概貌影响,大于 1000 公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。分形 - 自然几何一、欧氏几何的局限性自公元前 3 世纪欧氏几何基本形成至今已有 2000 多年。尽管此间从数学的内在发展过程中产生了射影几何、微分几何等多种几何学,但与其他几何学相比,人们在生产、实践

10、及科学研究中更多涉及到的是欧氏几何。欧氏几何的重要性可以从人类的文明史中得到证明。欧氏几何主要是基于中小尺度上,点线、面之间的关系这种观念与特定时期人类的实践。认识水平是相适应的,数学的发展历史告诉我们,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的囹象多是一些囫锥曲线、线段组合,受认识主。客体的限制,欧氏几何具有很强的“人为”特征。这样说并非要否定欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。进入 20 世纪以后,科学的发展极为迅速。特别是战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对

11、物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。美国数学家 B, Mandelbrot 曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规则的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战,此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。人类认识领域的开拓呼唤产生一种新的能够更好地描述自然图形的几何学,在此,不妨称其为自然几何。二、分形的产生一些数学家在深入研究实、复分析过程中讨论了一类很特殊的集合(

12、图形),如 Cantor 集、Peano 曲线、KoCh曲线等,这些在连续观念下的“病态”集合往往是以反例的形式出现在不同的场合。当时它们多被用于讨论定理条件的强弱性,其更深一层意义并没有被大多数人所认识。1975 年,Mandelbrot 在其自然界中的分形几何一书中引入了分形(fractal)这一概念。从字面意义上讲,fractal 是碎块、碎片的意思,然而这并不能概括Mandelbrot 的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点:(1)具有无限精细的结构; (2)比例自相似性;3)一般它的分数维大子它的拓扑维数;(4)可以由非常简单的方

13、法定义,并由递归、迭代产生等。(1) (2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。图 1 中五条曲线自下而上,按图中所示的规律逼近 Koch 曲线。Koch 曲线处处连续,但处处不可导,其长度为无穷大,以欧氏几何的眼光来看,这种曲线是被打入另类的,从逼近过程中每一条曲线的形态可以看出分形四条性质的种种表现。以分形的观念来考察前面提到的“病态 ”曲线,可以看出它们不过是各种分形。我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何作一比较,可以得到这样的结论:欧氏几

14、何是建立在公理之上的逻辑体系其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范日主要是人造的物体。而分形的历史只有 20 来年,它由递归、迭代生成,主要适用于自然界中形态复杂的物体。分形几何不再以分离的眼光看待分形中的点、线、面,而是把它看成一个整体。三、自然几何观及其应用平面上决定一条直线或圆锥曲线只需数个条件。那么决定一片蕨叶(参见图 2)需要多少条件?如果把蕨叶看成是由线段拼合而咸,那么确定这片蕨叶的条件数相当可现,然而当人们以分形的眼光来看这片蕨叶时,可以把它认为是一个简单的迭代函数系统的结果,而确定该系统所需的条件数相比之下要少得多这说明用特定的分形拟

15、合蕨叶比用折线拟合蕨叶更为有效。分形观念的引入并非仅是一个描述手法上的改变,从根本上讲分形反映了自然界中某些规律性的东西,以植物为例,植物的生长是植物细胞按一定的遗传规律不断发育、分裂的过程,这种按规律分裂的过程可以近似地看做是递归、迭代过程,这与分形的产生极为相似。在此意义上,人们可以认为一种植物对应一个迭代函数系统,人们甚至可以通过改变该系统中的某些参数来模拟植物的变异过程。分形几何还被用于海岸线的描绘及海图制作、地震预报、图象编码理论、信号处理等领域,并在这些领域内取得了个人注目的成绩。作为多个学科的交叉,分形几何对以往欧氏几何不屑一顾(或说是无能为力)的“病态” 曲线的全新解释是人类认识客体不断开拓的必然结果。当前,人们迫切需要一种能够更好地研究、描述各种复杂自然曲线的几何学:而分形几何恰好可以堪当此用。所以说,分形几何也就是自然几何,以分形或分形的组合的眼光来看待周围的物质世界就是自然几何观。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。