基于汽车发动机飞轮的设计与制造.doc

上传人:dwx****52 文档编号:3286559 上传时间:2019-05-28 格式:DOC 页数:24 大小:994.91KB
下载 相关 举报
基于汽车发动机飞轮的设计与制造.doc_第1页
第1页 / 共24页
基于汽车发动机飞轮的设计与制造.doc_第2页
第2页 / 共24页
基于汽车发动机飞轮的设计与制造.doc_第3页
第3页 / 共24页
基于汽车发动机飞轮的设计与制造.doc_第4页
第4页 / 共24页
基于汽车发动机飞轮的设计与制造.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、- 1 -目 录一 摘要3二 正文31 绪论31.1 选题的意义与目的31.2 飞轮的发展史42 飞轮工作的原理及52.1 飞轮的组成和材料的5 2.3 飞轮原理及在发动机中的作用 5 2.3 飞轮的结构、功能及应力分析7 3 飞轮的动态优化设计113.1 飞轮的动态优化设计的意义113.2 模型简化与方案选择123.3 飞轮的动态有限元分析13 3.4 飞轮的动态优化15 4 飞轮浇铸工艺的设计184.1 无冒口铸造方案的确定184.2 无冒口方案的设计与实施185、飞轮的加工工艺及流程195.1 飞轮主要加工技术要求分析195.2 工艺方案分析215.3 飞轮机械加工工艺路线的制定216

2、结论237 结束语23三 参考文献25- 2 -基于汽车发动机飞轮的设计与制造 学号:09131050701265 姓名:王 江 专业:机械设计制造及其自动化摘要 目的 通过对汽车发动机飞轮的设计模拟的计算了飞轮的飞轮的质量和设计的合理性,使飞轮性能和质量得到了很好的保障。对飞轮浇铸工艺的设计和加工技术要求、工艺方案的分析,有利于提高飞轮的产品质量、工作性能,节约了制造和加工的成本,为企业赢得了时间和效益。方法 利用相关理论知识和参数化建模,利用 ANSYS 软件进行动态有限元分析得出相应优化结果。结合工作生产实际,明确了飞轮浇铸工艺和加工工艺。结果 在参数化建模、动态有限元分析和制定浇铸及加

3、工工艺中制定多种不同的方案,在优化设计中,通过数据对比,方案二优于方案一。结论 基于有限元法的参数化建模可以快速动态的修改模型动态得到各种分析结果。关键词:发动机飞轮,有限元分析,参数化建模,无冒口铸造,机械加工飞轮是汽车发动机中有重要作用但结构相对简单的零件之一,本文主要介绍了汽车发动机飞轮的发展史,工作原理,应力分析,动态优化设计,浇铸工艺的设计,机械加工流程等。为了保证飞轮又足够的转动惯量、刚度和强度,并使飞轮在满足设计要求的前提下质量尽可能小,这里利用有限元分析软件ANSYS 对某飞轮进行参数化建模,动态的分析了飞轮的应力场与位移场。实践证明,利用数化建模可以大大地提高效率,并且可以在

4、设计阶段的合理范围内任意取值进行分析,有利于缩短设计周期,降低制造成本。从工作生产实际出发,研究了飞轮的无冒口铸造工艺及机械加工工艺规程,分析了飞轮在加工过程中的注意事项,并完成加工工序设计。1 绪论1.1 选题的意义与目的发动机后端带齿圈的金属圆盘称为飞轮。飞轮用铸钢制成,具有一定的重量(汽车工程称为质量),用螺栓固定在曲轴后端面上,其齿圈镶嵌在飞轮外- 3 -圆。发动机启动是,飞轮齿圈与启动齿轮啮合,带动曲轴旋转起动。许多人认为,飞轮仅是在起动时才其作用,其实飞轮不但在发动机起动时起作用,还在发动机启动后贮存和释放能量来提高发动机运转的均匀性,同时将发动机动力传递至离合器。 飞轮是发动机的

5、关键安全件,其功能是调节发动机曲轴转速变化,其稳定转速的作用。发动机在任何工况下,既使是稳定工况,由于负荷的突变,发动机输出扭矩与其所带动的阻力矩之间不相等,二产生曲轴转动角速度的波动,引起曲轴回转的不均匀性。这会产生一系列不良后果:对由曲轴驱动的另部件产生冲击,影响工作可靠性。降低使用寿命,产生噪音曲轴振动等。因此必须控制曲轴回转的不均匀性在允许范围之内。飞轮正是在利用其具有较大的转动微量,在曲轴加减速过程中吸收或释放其动能,稳定曲轴加速度得变化,从而稳定转速。我们知道,四冲程发动机只有作冲程产生动力,其他进气、压缩、排气冲程是消耗动力,多缸发动机是间隔地轮流作功,扭矩呈脉冲输出。另外,当汽

6、车起步时,由于扭力突然剧增会使发动机转速急降而熄火。利用飞轮所具有的较大惯性,当曲轴转速增高时吸收部分能量阻碍其降速,当曲轴转速降低时释放部分能量使得其增速,这样一增一降,提高了曲轴旋转的均匀性 1.2 飞轮的发展史飞轮的概念很早就出现在人类的生活中,新石器时代的纺锤及陶轮都有类似飞轮的概念。十一世纪时安达卢斯的农艺师 Ibn Bassal 在其著作Kitab al-Filaha中,描述飞轮应用在水力机械中的情形。根据从事中世纪研究的学者 Lynn White 的资料,首次出现使用飞轮来作为稳定转速的记载是在德国艺术家 Theophilus Presbyter(约 1070-1125)的著作D

7、e diversibus artibus(On various arts)中,他在他的许多机器中都使用到飞轮。在工业革命时, 詹姆斯瓦特将飞轮应用在蒸气机上,而 詹姆斯皮卡德( James Pickard)将飞轮和曲柄(C rank)一起使用,将往复式运动变成旋转运动。飞轮应用在车辆上时,需考虑进动的问题。若一个旋转的飞轮受到其他会改变其旋转轴力矩的影响,飞轮的旋转轴也会会绕另一个轴旋转,这个称为进动。一部有垂直轴飞轮的车辆在通过山顶或谷底时,会受到一个横向的动量,用二个旋转方向相反的飞轮即可消除此问题。飞轮常运用在打洞机及铆钉机中,平时储存马达提供的能量,在需要功率输出时,即可释放原先储存的

8、能量。在内燃- 4 -机的应用上,飞轮是连结到曲轴上的大质量轮子,主要目的是维持曲轴上固定的角速度。2 飞轮工作的原理及应力分析2.1 飞轮的组成和材料的选取飞轮总成 (Flywheel assembly )一般由飞轮、齿圈、离合器定位销、轴承等组成,部分产品轴承用花键代替。现在随着爱车一族的不断钻研扩展,发动机飞轮已演变出实用的好多类型,如双质量减震飞轮(主要用于柴油发动机),45#锻钢轻质量飞轮,铝合金 T6飞轮,轻质量飞轮主要用于赛车和特殊爱好者使用,安装这种飞轮以后,发动机加速快,缺点是收油门后减速也快。材质:一般使用铸铁 :HT200 HT250 ;球铁:QT450-10、QT600

9、-3、QT500-7 等,国外也有用 45 号钢制作的飞轮。 灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。2.2 飞轮原理及在发动机中的作用 飞轮(Flywheel)装置在曲柄的轴的

10、一端,是铸铁制造较重的轮盘,在爆发冲程传递回转力,由飞轮一时吸收储蓄,供给下一次动力冲程,能使曲柄轴圆滑的回转作用,外环的齿圈可供起时摇转引擎之用,背面与离合器片接触,成为离合器总成的主件飞轮是发动机在曲轴后端的较大的圆盘状的零件,它具有较大的转动惯量,具有以下功能:将发动机作功形成的部分能量储存起来,以克服其他形成的阻力,使曲轴均匀旋转。通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来。装有与起动机结合的齿圈,便于发动机启动。- 5 -飞轮,是发动机装在曲轴后端的较大的圆盘状零件,它具有较大的转动惯量,具有以下功能: 将发动机作功行程的部分能量储存起来,以克服其他行程的阻力,使曲轴均

11、匀旋转; 通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来;装有与起动机接合的齿圈,便于发动机起动。 驱动盘,也是飞轮的一种,材质用 45 号钢冲压成型,再压制齿圈。 飞轮是一个延著固定轴旋转的轮子或圆盘,能量以旋转动能的方式储存在转子中: 21kEI其中 是角速度I 是质量相对轴心的转动惯量,转动惯量是物体抵抗力矩的能力,给予一定力矩,转动惯量越大的物体转速越低。固体圆柱的转动惯量为 ,21Imr若是薄壁空心圆柱,转动惯量为 ,2I若是厚壁空心圆柱,转动惯量则为 .21()r其中 m 表示质量,r 表示半径,在转动惯量列表中可以找到更多的信息。在使用国际单位制计算时,质量、半径及角速

12、度的单位分别是公斤、米,弧度/秒,所得到的结果会是焦耳。由于飞轮可储存的能量是和转动惯量成正比,因此在设计飞轮时,会尽量在不变动质量的条件下,去增加其转动惯量,例如说中间搂空将,质量集中在飞轮的外围等作法。在利用飞轮储存能量时,还需要考虑在转子不变形或断裂的前提下,飞轮可储存的能量上限,转子的环向应力( hoop stress)是主要的考量因素:2tr其中:t 是转子外圈所受到的张应力 是转子的密度r 是转子的半径 是转子的角速度飞轮储存的能量范例:- 6 -以下是一些“飞轮”的范例及其储存的能量,I = kmr2, k 的计算方式请参考转动惯量列表(表 1)。物体 k (随形状而变)质量 直

13、径 转速 所储存的能量(焦耳)所储存的能量自行车车轮(时速 20 公里)1 1 公斤 70 厘米 150 rpm 15 J 4 103 Wh速度加倍的自行车车轮(时速 40 公里)1 1 公斤 70 厘米 300 rpm 60 J 16 103 Wh质量加倍的自行车车轮(时速 20 公里)1 2 公斤 70 厘米 150 rpm 30 J 8 103 Wh火车车轮(时速 60 公里)1/2 942公斤1 米 318 rpm 65 kJ 18 Wh大卡车车轮(时速30 公里)1/2 1000 公斤2 米 79 rpm 17 kJ 4.8 Wh小的飞轮电池 1/2 100公斤60 厘米 20000

14、 rpm 9.8 MJ 2.7 kWh火车再生制动用的飞轮1/2 3000 公斤50 厘米 8000 rpm 33 MJ 9.1 kWh备用电源用的飞轮 1/2 600公斤50 厘米 30000 rpm 92 MJ 26 kWh地球 2/5 5.97 1024 公斤12,725公里大约每天一转(696 rpmnb 1)2.6 1029 J72 YWh ( 1024 Wh)表 1 转动惯量列表飞轮能量和材料的关系:对于相同尺寸外形的飞轮,其动能和环向应力及体积成正比: ktEV若以质量来表示,则其动能和质量成正比,也和单位密度的环向应力成正比: tkEm可以称为比强度( Specific str

15、ength)。若飞轮使用材质的比强度越t高,其单位质量下的能量密度也就就越大。2.3 飞轮的结构、功能及应力分析飞轮效应指为了使静止的飞轮转动起来,一开始你必须使很大的力气,一圈一圈反复地推,每转一圈都很费力,但是每一圈的努力都不会白费,飞轮会- 7 -转动得越来越快。达到某一临界点后,飞轮的重力和冲力会成为推动力的一部分。这时,你无须再费更大的力气,飞轮依旧会快速转动,而且不停地转动。这就是“飞轮效应”飞轮设计首先应用工程提高发动机应用配套对飞轮的基本要求。包括适用机型,飞轮因负荷突变而需要稳定转速的基本参数,如质量、转动惯量,所需承受的最大转速,动力输出和离合器安装定位孔(面)的要求;安装

16、起动电机和齿圈的要求。然后根据要求确定飞轮轮缘尺寸。腹板及轮辐过度连接区域结构、尺寸及厚度,轮毂连接定位结构及尺寸。在此还应确定飞轮安装螺栓的规格和等级,以便飞轮安装部位的设计。一般飞轮螺栓都采用 10.9 级或更高的螺栓。在经过以上几个步骤,基本上确定了飞轮的直径、轮缘形状,辐板偏心量、飞轮开槽钻孔等本形式后,现应进行应力分析,这是飞轮设计中得关键一步。应力分析中应考虑角加速度、振动、回转救应、动力输出和离合器负荷的影响。现在说明应力分析的计算方法及材料的选取2.3.1 离心应力飞轮是高速旋转运动件,其主要的离心应力是作用于飞轮栓安装孔剖面,BJ374 飞轮离合器销孔剖面轮缘短,螺栓孔剖面轮

17、缘长,离心力影响的危险剖面是螺栓孔剖面,其离心力应力为: 21AScMPR其中式中:S:离心力产生的切向回应了M:轮缘的开状系数(rad/see/rpm) 其是根据轮缘形状,面积转化为以下图 1 中得三种标准形式之一,计算查表确定 M。- 8 -图 1 轮缘标准形状尺寸B10 飞轮已知 Wr,R-轮缘近似径向厚度为,将轮缘划分成三部分(见图3.1),其部分等效面积计算和为(计算过程略) 23405.8TrWm91.5.则 547ArT4.206TrR查表图,线性插值 2/sec0.295radMom:材料密度3/g飞轮材料一般选用灰铸铁 250(HT250) =0.01 3/gm:飞轮计算转速

18、,一般考虑 50%的转速,W=1.52100=3150rpmR:飞轮外径 B10 飞轮:已知 R=127A1:飞轮剖面径向无钻孔,开槽等的实心面积。B10 飞轮 A1=轮缘面积+圆盘面积+法兰面积=147129 平安毫米As:飞轮剖面径向最小面积(包括去除所有的钻孔、开槽,凹入区域)。B10 飞轮 A2=A1-孔、槽、凹入区域面积=110718 平方毫米则 Sc=7751 psi对在应力计算中,轮缘长度大于轮辐厚度 4 倍以上,或轮缘伸出长度大于轮缘厚度 3 倍以上的,则用下列计算离心应力: 32108.41()ArScRpsi2.3.2 热应力:对不带离合器的飞轮设计,可不进行热应力计算,热

19、应力计算公式如下: 12dtefMEASpsiNV式中,St:轮缘处产生的最大拉伸热效应力 psi.M1:材料应力系数- 9 -B10 发动机飞轮,材料为 HT250,查表 M=0.396Ed:飞轮一离合器系统能量扩散系数,由发动机转速、离合器传输扭矩、啮合速度确定,对 B10 飞轮和 Lipe14n-2 离合器。N:离合器摩擦片数目,Lipe14n-2 离合器为双盘,所以 N=2。Weff 飞轮有效体积是指有关离合器工作区域的体积,一般转化标准的结构形式。B10 发动机飞轮 Weff:圆盘体积+轮缘有效体积(前、后缘)圆盘体积: t后缘体积:由已知 、 、 ,0LT0R则 06.7RT0.8

20、74查表图,线性插值得: 得:0.9efT0.9125.nefL2.3.3 算最大全负荷转速飞轮所能承受的最大转速由应用工程根据发动机配套使用确定,飞轮限定的最大全负荷转速得超过 3255rpm,根据上述 Sr,St 和材料许用应力 Sa,核算飞轮所能承受的最大转速。其应取下列计算公式中得最小值,计算公式为: 2max3aSWr即 ()atcS2.3.4 拉强度试验按图纸要求在飞轮上取试样进行拉力试验,取样标准应该按金属拉力试样GB6397-86 执行。拉力试样如图 2:图 2 拉力试样- 10 -L-平行长度,LL0+d0;L0试件平行长度部分两条刻线间的距离,成为原始标距;d0平行长度部分

21、原始直径。圆形比例试件分两种:L0=10d0,称为长试件;L0=5 d0,称为短试件。本实验试件采用 d0=10mm,L0=100mm 的长试件。将试件装好后按下“运行”按钮,试验机开始按试验程序进行拉伸,仔细观察试件和计算机屏幕上的拉伸曲线在拉伸过程中的对应情况,直至拉断,取下试件并观察断口。试验结束,在试验结果栏中,程序将自动计算结果显示在其中。浏览拉伸曲线,记录屈服载荷 Fs(Fel)和最大载荷 Fbz(Fm)。输入断后标距,断后面积,打印试验报告。根据测得的灰铸铁拉伸载荷 Fs、Fb 计算出屈服极限 和强度极限 。sb, , 0sFA0b2004dA3 飞轮的动态优化设计3.1 飞轮的

22、动态优化设计的意义在设计任务中,经常遇到系列产品的设计工作,这些产品在结构上基本相同,但由于使用场合、工况的差别,在结构尺寸上形成了一个系列。对于这种设计任务,如果一一地去设计、绘图等,会带来很大的重复工作量。这样不仅浪费了人力、物力资源,也延长了设计周期。另外,工程中得很多结构,在投入正式使用之前,都需要进行有限元结构分析。有限元分析工程中很大一部分工作量在于实际结构抽象出有限元分析数学模型划分有限元网络。该过程通常独立于建立实体模型。对于系列化产品,其有限元结构分析的工作类似于模型建立工作,有着相当大的重复性。参数化建模是使用重要几何参数快速结构和修改几何模型的一种造型方法,这些几何参数包括控制形状大小的尺寸和定位形状的方向矢量等。若几何模型的所有尺寸是参数化的就可以动态修改参数,随后动态得到有限元分析结果。飞轮是内燃机中有重要作用但结构形状相对于简单的零件之一。它是一个转动惯量很大的圆盘,其中要功用是将在做功行程中传输给曲轴的功的一部分

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。