1、标准正态分布图的若干性质用符号积分求的 的 1-6阶倒数,为方便起见,省去了前面的常系数2)1()(xexfsyms xy=exp(-1/2*x2);for i=1:6diff(y,x,i)end-5 -4 -3 -2 -1 0 1 2 3 4 500.10.20.30.40.50.60.70.80.91-5 0 5-1-0.500.51-5 0 5-1-0.500.5-5 0 5-1.5-1-0.500.511.5-5 0 5-2-10123-5 0 5-6-4-20246-5 0 5-15-10-5051015x=-5:.1:5;y=x;x;x;x;x;x;y(1,:)=-x.*exp(-
2、x.2*1/2);y(2,:)=-exp(-1/2*x.2)+x.2.*exp(-1/2*x.2);y(3,:)=3*x.*exp(-1/2*x.2)-x.3.*exp(-1/2*x.2);y(4,:)=3*exp(-1/2*x.2)-6*x.2.*exp(-1/2*x.2)+x.4.*exp(-1/2*x.2);y(5,:)=-15*x.*exp(-1/2*x.2)+10*x.3.*exp(-1/2*x.2)-x.5.*exp(-1/2*x.2)y(6,:)=-15*exp(-1/2*x.2)+45*x.2.*exp(-1/2*x.2)-15*x.4.*exp(-1/2*x.2)+x.6.*
3、exp(-1/2*x.2)for i=1:6subplot(2,3,i);plot(x,y(i,:)grid onendz=exp(-1/2*x.2);figure(1)plot(x,z)grid on有图像可以得到以下结论:1) 针对 ,为了寻找其拐点,计算其二阶导数为零的点,它们为2)1()(xexf(1,0)和(-1,0) 。可以看出这两点之间恰好对应 。),(2)这七条曲线中,零点个数分别为 0,1,2,3,4,5,6,7,后六个零点的横坐标对应为0; 1,-1; ,0; -2.3344,-0.7420,0.7420,2.3344; -2.8570,-31.3556,0,1.3556,
4、2.8570; -3.3243,-1.8892,-0.6167,0.6167,1.8892,3.3243;求解程序如下fzero(-x*exp(-1/2*x2),0);fzero(-exp(-1/2*x2)+x2*exp(-1/2*x2),0);fzero(3*x*exp(-1/2*x2)-x3*exp(-1/2*x2),2);% 第二参数或为 1fzero(3*exp(-1/2*x2)-6*x2*exp(-1/2*x2)+x4*exp(-1/2*x2),2);% 第二参数或为1fzero(-15*x*exp(-1/2*x2)+10*x3*exp(-1/2*x2)-x5*exp(-1/2*x2
5、),3)% 第二参数或为 2,0fzero(-15*exp(-1/2*x2)+45*x2*exp(-1/2*x2)-15*x4*exp(-1/2*x2)+x6*exp(-1/2*x2),3)% 第二参数或为 2,13)针对 2)中的点求双侧概率a=1 1.7321 0.7420 2.3344 1.3556 2.8570 0.6167 1.8892 3.3243;b=0.6827 0.9167 0.5419 0.9804 0.8248 0.9957 0.4626 0.9411 0.9991;程序如下:a=1 1.7321 0.7420 2.3344 1.3556 2.8570 0.6167 1.8892 3.3243;for i=1:9b(i)=cdf(normal,a(i),0,1)-cdf(normal,-a(i),0,1,1);endb