1、1广东北江中学 2008 届高三月考(三)数学(理科)试题卷一:选择题(每题只有一个选择满足要求,每小题 5 分,共 40 分)1: 已知命题 : ,则( ) p1sin,xRA. B. i,:x 1sin,:xRpC. D. s2函数 的值域是 ( )2(logl2xy)A B C D1,(),33,1),31,(3在用数学归纳法证明多边形内角和定理时,第一步应验证( )(A): n=1, ( B):n=2, (C):n=3 , ( D):n=44有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有 ( )A36 种 B48 种 C72 种 D96 种5一个等差数列共
2、n 项,其和为 90,这个数列的前 10 项的和为 25,后 10 项的和为75,则项数 n 为 ( )A.14 B.16 C.18 D.206:把函数 的图象按向量 平移后得到函数 的图象,siyx(,)kabsin()13yx则向量 为:(,)kabA: , B: , C: , D: 。13(,1)3(,1)3(,)7设 f(x) = 10x,下列等式中,对于 x1 , x2 R 不恒成立的是( )(A) f(x1 + x2 ) = f( x1 )f( x2 ) (B) 1x0)(f(C) (D) 10(f11.84 只笔与 5 本书的价格之和小于 22 元,而 6 只笔与 3 本书的价格
3、之和大于 24 元,则 2 只笔与 3 本书的价格比较( )A2 只笔贵 B3 本书贵 C二者相同 D无法确定二:填空题(每小题 5 分,共 30 分)9:定义在 R 上函数 f(x)满足 f(x+1)=f(x) ,若 则 (0.5)1,f(7.5)f210:二项式 的展开式中的常数项是: 61()x11:已知函数 为增函数,则 a 的取值范围是: 32,()faxR12:已知函数 f(x)满足:f(p+q)=f(p)f(q), f(1)=3,则= )7(845)6342)1(222 fff (从下列 3 题中选做两题,若全做的按前两题记分)13::若 则 的最小值为: 。1,xyz223Fx
4、yz14:已知圆 O 直径为 10,AB 是圆 O 的直径,C 为圆 O 上一点,且 BC=6,过点 B 的圆 O 的切线交 AC 延长线于点 D,则 DA= 15:曲线 与曲线 的位置关系是: 24sin()x12xty三:解答题(共 80 分)16、 (12 分)从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,试求:(1)所选 3 人都是男生的概率。(2)所选 3 人中恰有 1 名女生的概率。(3)所选 3 人中至少有 1 名女生的概率。17、 (12 分)在 中, 、 、 分别为 、 、 的对边,已知ABCabcABC, ,三角形面积为 。3tantan3A7232(1)求 (2
5、)318、 (14 分)某公司要将一批不易存放的蔬菜从 A 地运到 B 地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具 途中速度( km/h) 途中费用(元/km) 装卸时间 (h) 装卸费用 (元)汽车 50 8 2 1000火车 100 4 4 2000若这批蔬菜在运输过程(含装卸时间)中损耗为 300 元/h ,试根据 A、B两地距离大小比较采用哪种运输工具较好(即运输过程中的费用与损耗费用之和最小)?19、 (14 分)已知函数 2()log(),fxmR(1)若 , , 成等差数列,求 m 的值。()f2f4(2)若 、 、 是两两不相等的正数,且
6、、 、 依次成等差数列,试abcabc判断 与 的大小关系,并证明你的结论。()f()f420、 (14 分)已知 在区间 上是增函数2()()xafR1,(1)求实数 的值组成的集合 A;a(2)设关于 的方程 的两个非零实根为 。x1()fx12,x试问:是否存在实数 m,使得不等式 对 及2|tmaA恒成立?若存在,求 m 的取值范围;若不存在,请说明理由。1,t21、 (14 分)设 , ,Q= ;若将 ,21087Ma2Pa6algMlgQ,lgP 适当排序后可构成公差为 1 的等差数列 的前三项n(1)试比较 M,P,Q 的大小。(2)求 的值及 的通项;an(3)记函数 的图象在 轴上截得的线段长212()(*)nfxaxNx为 ,设 ,nb123)4nTbb 求 ,并证明n1234nT5广东北江中学 2008 届高三月考(三)数学(理科)试题答题卷二、填空题(每小题 5 分,共 30 分)9、_;10、_;11、_;12、_;13、_;14、_; 15: _;三、解答题(共 80 分)16、 (12 分)617、 (12 分)718、 (14 分)819、 (14 分)920、 (14 分)姓名:_班级:_学号:_1021、 (14 分)