1、1第一章 一元一次不等式和一元一次不等式组3不等式的解集贵州省贵阳市第十七中学 金 萍 聂 慧一、学生知识状况分析学生在初一时已经学过数轴,对数轴有一定的了解,掌握了数轴的画法,知道实数与数轴上的点成一一对应关系,并且建立了一定的数形结合思想.以前学生所学的方程的解具有唯一性,而不等式的解的个数有无数个,这对学生来说是全新的开始;在前一课时,学习了不等式的基本性质,学生可利用性质解一些简单的不等式,为本节内容打下了基础。但对不等式解集的含义及表示方法还全然不知,因而在教学中要作更进一步的探索和学习.二、教学任务分析1、教材分析: 通过前面的学习, 学生已初步体会到生活中量与量之间的关系,不仅有
2、相等而且有大小之分,为了弄清这种大小关系,教材在此创设了丰富的实际问题情境,引出不等式的解的问题,进一步探索出不等式的解集,同时还要求在数轴上把不等式的解集表示出来,从而渗透了“数- 形”结合的思想,发展了学生符号表达的能力以及分析问题、解决问题的能力。教材中设置的“议一议”意在引导学生回忆实数与数轴上的点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,体现了新教材循序渐进,螺旋上升的特点.2、教学目标:(1)知识与技能目标:能够根据具体情境中的大小关系了解不等式的意义能够在数轴上表示不等式的解集(2)过程与方法目标:培养学生从现实情况中探索、发现并提出简单的数学问题的能力。经历求不
3、等式的解集的过程,并试着把不等式的解集在数轴上表示出来,发展学生的创新意识。2(3)情感态度与价值观目标:从实际问题中抽象出数学模型,让学生认识数学与人类生活的密切联系及对人类历史的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造。3、教学重点:(1)理解不等式中的相关概念(2)探索不等式的解集并能在数轴上表示出来4、教学难点:探索不等式的解集并能在数轴上表示出来三、教学过程分析本节课设计了七个环节,第一环节复习旧知识;第二环节情境引入;第三环节课堂探究;第四环节例题讲解;第五环节随堂练习;第六环节课堂小结;第七环节布置作业。第一环节:复习旧知识活动内容:师:上节课,对照等式的
4、性质类比地学习了不等式的基本性质,并且也探索出了它们的异同点,下面我们来回顾一下不等式的基本性质。 (多媒体呈现)活动目的:让学生回顾前一节内容,也为本节课教学做准备,起到承上启下的作用。活动效果:学生基本掌握不等式的基本性质。第二环节:创设情境,导入新课活动内容:在某次数学竞赛中,教师对优秀学生给予奖励,花了 30 元买了 3 个笔记本和若干支笔,已知笔记本每本 4 元,笔每支 2 元,问最多能买多少支笔?活动目的:由一个实际生活情景引入,能引起学生学习的积极性,具有实际生活意义。活动效果:学生 1:3 个笔记本共花去 12 元,还剩 18 元,可买 9 支笔.学生 2:我认为可以买 1,2
5、,39 支,最多 9 支.3此时学生讨论激烈,具有较高的学习热情,探索欲望极强。为以下不等式的解集作下铺垫.第三环节:师生互动,课堂探究活动内容:通过学生们的相互交流,抽象到数学上:设至少可买 X 支笔,那么买笔记本的总价格与买笔的总价格的和不超过 30 元,因此: 34+2X30,利用不等式的基本性质可解得 X9.(一)提出问题 ,引发讨论探索交流:1、若某人要完成一件工作,要求他完成这项任务的时间不得少于 4 小时,你知道他允许用的时间有多长吗?(X4)2、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到 10 米以外的安全区域,已知导火线的燃烧速度为 0.02m/s,人离
6、开的速度为 4 m/s,那么导火线的长度应为多少?分析:人转移到安全区域需要的时间最少为 (S) ,导火线燃烧的时间为410秒,要使人转移到安全地带,必须有: 102.X 2.X410解:设导火线的长度为 x() ,则: 102.X4x5(二)想一想:(1)x=5 、6 、8 能使不等式成立吗?(2)你还能找出一些使不等式 x5 成立的 x 的值吗?(三)导入知识,解释疑难:通过以上问题情境的引入可知:所列出的不等式中都含有未知数,而符合条件的未知数的值很多,只要将其中任一个未知数的值代入原不等式中,均能使不等式成立,把“能使不等式成立的未知数的值,叫做不等式的解。 ”不等式的解有时有无数个,
7、有时有有限个,有时无解。一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一4种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解。(四)议一议:请同学们用自己的方式将不等式 X5 的解集和不等式 X-5-1 的解集分别表示在数轴上,并与同伴进行交流学生 1:X5 X4学生 2:X5 X4教师:同学 1 他这样表示无法区别有“等于”和没有“等于” 。同学 2 的方法让人认为解集是在两个数之间,也容易引起误解。那么我们怎么来解决呢?以上两个解集应表示为:注 意 : 将不等式的解
8、集表示在数轴上时,要注意:1)指示线的方向, “”向右, “”向左.2)有“=”用实心点,没有“=”用空心圈. 活动目的:通过生活情境导入不等式的意义及解集的含义,从而引发表示不等-2 -1 0 1 2 3 4 5 6 7X5-2 -1 0 1 2 3 4 5 6X4-2 -1 0 1 2 3 4X4-2 -1 0 1 2 3 4 5 6 7X5-1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7-1 0 1 2 3 4 5 6 7-2 -1 0 1 2 3 4 5 6-1 0 1 2 3 4 5 6 7-1 0 1 2 3 4 5 6 7( )( )5式解集的必要性。学
9、习在数轴上表示不等式解集时,先鼓励学生用自己的方法表示,以发展他们的创新意识。活动效果:本环节从生活实际情境引入,大力激发了学生的学习热情,较简单的问题串,让学生获得了成功的感受。最后在数轴上表示不等式的解集,充分体现了学生的创新能力。第 四 环 节 : 例 题 讲 解活动内 容 : 根 据 不 等 式 的 基 本 性 质 求 不 等 式 的 解 集 , 并 把 解 集 表 示 在 数轴 上( 1) X-2 -4 ( 2) 2X 8 -2X-2 -10解 : ( 1) X -2 ( 2) X 4( 3) X 4活动目的:给学生做个示范,给出格式及方法。活动效果:学生基本都能轻松掌握第 五 环
10、节 : 随 堂 练 习活动内 容 :1、 判 断 正 误 :(1)不等式 X-10 有无数个解(2)不等式 2X-30 的解集为 X 322、将下列不等式的解集分别表示在数轴上:(1)X4 (2)X-1 (3)X-3 (4)X53、填空 1)方程 2x=4 的解有( )个, 不等式 2x4 的解有( )个 2)不等式5x -10 的解是 ( )3)不等式 x-3 的负整数解是( )-3 -2 -1 0 10 1 2 3 40 1 2 3 464)不等式 x-12 的正整数解是( )活动目的:对本课知识进行巩固练习。活动效果:学生都能利用不等式的基本性质解简单的不等式,并能在数轴上表示不等式的解
11、集。第六环节:课时小结活动内容:1、理解不等式的解,不等式的解集,解不等式的概念2、会根据不等式的基本性质解不等式,并把解集表示在数轴上。活动目的:鼓励学生回顾本节课所学内容,用自己的语言叙述什么是不等式的解、不等的解集、解不等式的概念以及怎样把不等式的解集表示在数轴上。活动效果:学生能用自己的语言较为准确地描述不等式解、解集、解不等式的概念,对在数轴上表示不等式解集的方法及注意事项都能准确表述。第七环节:作业习题 1、3四、教学反思1、要充分领会教材和使用教材:教师在教学过程中应充分领会教材,注重知识的衔接,在教学中充分体现数形结合思想的渗透,同时也不时渗透集合的概念为高中学习作好衔接,设置
12、问题情境让他们有兴趣参与探究、学习,从而去思考。培养学生动手、动脑、合作的精神,教学中重点放在不等式解集的探索过程。2、充分体现学生的合作交流、积极参与通过教师的引入让学生体会采用类比法思想自己推导出不等式的性质,进一步通过问题情况的引入,积极参与交流探索,最后老师作进一步诱导,能及时发现学生在分析问题解决问题中的不同见解,以及思维的误区,及时进行纠正、指导。把学生在课堂上学习的热情激发出来,使得人人参与交流、探索,给每个学生展示自己的平台。73、需注意的方面:在给予学生充分交流的同时,老师需积极参与,与学生一起创建建模的理念,并不时纠正不正确的思维。老师在小组活动中应给予学生充分的启发引导,对合作交流中出现的问题要及时更正,对困难学生要给予帮助,使小组合作学习更具有实效性。