1、第十五章“整式”简介人教版初中数学新课标实验教科书第十五章是“整式” ,本章属于全日制义务教育数学课程标准(实验稿) 中的“数与代数”领域。整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。整式是在以前已经学习了有理数运算、列简单的代数式和一次方程及不等式的基础上引进的。本章共安排了 5 个小节及两个选学内容,教学时间约需 13 课时,大体分配如下(既供参考):15.1 整式的乘法 4 课时15.2 乘法公式 2 课时15.3 整式的除法 2 课时15.4 因式分解 3 课时数学活动小结 2 课时一、教科书内容和课程学习目标(一)本章知识结构
2、框图(二)教科书内容本章的主要内容是单项式、多项式、整式的有关概念,合并同类项、添括号法则、整式的四则运算、乘法公式以及因式分解。这些知识是以后学习分式、根式运算以及函数等知识的基础。同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。全章共包括四节:15.1 整式的乘法本节分为 4 个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数、整式加减等知识的基础上学习的。其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是学习整式乘法的前提条件,教科书把它们作为本节的预备知识依次安排在前 3 个小节中。教学时,应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。在学
3、生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第 4 小节的开始安排了单项式乘法。我们知道,运用多项式乘法法则进行多项式乘法的关键,是熟练地进行单项式乘法,对此应该予以高度重视。在学生掌握了单项式乘法的基础上,利用分配律等就能进一步引进单项式与多项式乘法及多项式与多项式乘法,这样就使得整式乘法的运算从简到繁,由易到难,层层递进,环环相扣。15.2 乘法公式本节分为 2 个小节。乘法公式是在学习整式乘法的基础上得到的,在第 1 小节的开始,教材以“探究”的形式安排了 3 个题目,这些题目,按照多项式的乘法法则计算并不困难。通过总结三个题目结果的共同点,我们选取上述形式的多项式乘法并直接
4、写出结果,把它们作为公式,即平方差公式,今后遇到该形式的多项式乘法时,可以直接写出结果。用类似的方式,第 2 小节引进了乘法的完全平方公式。在引进完全平方公式后,适时引进添括号法则,以满足整式运算的需要。15.3 整式的除法本节也分为 2 个小节。同底数幂的除法是学习整式除法的基础,因此教科书在第 1 小节中首先介绍同底数幂的除法性质。熟练地进行单项式除法是学好多项式除以单项式的关键,在第 2 小节,教科书根据乘、除互为逆运算的关系,并以分配律、同底数幂的除法为依据,由计算具体的实例得到单项式除法的法则。对于多项式除以单项式,教科书是从计算来导出运算法则的,根据是乘、除法互为逆运算及分配律。可
5、以看出,法则的基本点是把多项式除以单项式“转化”为单项式除以单项式,而单项式除法是已经学习并掌握了的。15.4 因式分解本节的内容是多项式因式分解中一部分最基本的知识和基本方法,它包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的两种基本方法,即提公因式法和公式法。两种方法分别安排在第 1 和第 2 小节。(三)课程学习目标本章内容的设计与编写以下列目标为出发点:1. 使学生理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。掌握单项式的系数、次数,多项式的项、次数等概念,明确它们之间的区别与联系;2. 使学生在理解同类项概念的基础上,掌握合并同类项的方法,并掌握添
6、括号的法则,能正确地进行同类项的合并和去括号与添括号。使学生做到在准确判断、正确合并同类项的基础上,进行整式的加减运算;3. 使学生掌握正整数幂的乘除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。使学生能熟练地运用乘法公式(平方差公式和完全平方公式)进行乘法运算;4. 使学生会进行整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;5. 使学生理解因式分解的意义并感受分解因式与整式乘法是相反方向的变形,让学生掌握什么是公因式
7、,掌握提公因式(字母的指数是数字)和运用公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。二、本章编写特点(一)强调重要的数学思想方法的渗透根据数与式之间的联系,教材通过类比的思想方法,由数的运算引出式的运算规律。体现了数学知识间具体与抽象的内在联系和数学的内在统一性,强调整式乘法与因式分解是相反方向的变形。在编写在整式乘法法则时,注意“转化”的思想方法。例如,多项式与多项式相乘的法则,第一步是“转化”为多项式与单项式相乘,第二步则是“转化”为单项式乘法,而单项式乘法则“转化”为有理数的乘法与同底数幂的乘法。教科书的安
8、排为这种“转化”的思想和方法提供了极大的方便。我们知道,幂的运算性质是整式运算的基础,它们是集中安排的,要打好这基础。而单项式乘法则是整式乘法的关键,它是作为幂的三个运算性质的直接运用安排的,这是通向本章的主要内容之一多项式乘法的“桥梁” ,然后依次安排多项式与单项式相乘、多项式与多项式相乘。在整式除法的教学中也要注意“转化”的思想方法。例如,多项式与单项式相除的法则,第一步是“转化”为单项式与单项式相除,第二步则是“转化”为有理数的除法与同底数幂的除法。可以看出,在整式的乘除法的学习中,只有打好基础,才能够熟练地进行后面的运算;只有在熟练运用“转化”方法的前提下,才能够顺利地取得较好的效果。
9、在编写本章教材时,注意了代数与几何之间的联系,在整式乘法和乘法公式部分,采用给出几何图形的方式来验证运算法则及公式的正确性,这充分体现了代数与几何之间的内在联系和统一。(二)充分体现从具体到抽象再到具体的认知过程从具体的实际问题出发,归纳出相关的数学概念,或抽象出隐含在具体问题中的数学思想和规律,这是本章的一个突出特点。密切联系实际,体现知识的形成和应用过程,这是编写本章时高度重视的一个中心课题。以第 15.2 节为例,无论同底数幂相乘、幂的乘方还是积的乘方,都是从几个具体的、简单的题目的运算出发,最后归纳出运算性质。然后,再利用归纳得出的结果进一步指导比较复杂的实际问题。而整式的加、减、乘、
10、除法无不是从具体的问题出发,最后归纳出运算法则,再进一步用于解决实际问题。这种从具体到抽象,再由抽象到具体的编排方式,可以循序渐进地向学生呈现教学内容,有助于学生的理解和掌握,符合现阶段学生的认知水平。三、几个值得关注的问题(一)发挥整式承前启后的作用在小学和七年级,已经学习了用字母代替数,列代数式表示现实世界中简单的数量关系、根据数量关系列方程和解方程,有了这些基本知识,学生已经对整式具有了一定的感性认识。学习整式的有关概念以及运算,都必须以已学过的数学知识为基础,比如整式的乘方离不开实数的乘方,整式的加、减、乘、除运算离不开实数的加、减、乘、除运算法则。整式中的字母表示数,整式的运算都是建
11、立在数的运算的基础之上,在整式运算的教学中要强调运用数的运算律。通过对数与式运算的对比分析,使学生理解认识事物的过程是由特殊(具体)到一般(抽象) ,又由一般(抽象)到特殊(具体) ,在不断重复中得到提高,培养学生初步的辨证唯物主义观点。因式分解是本章的重要内容之一,它与前面的整式和后续的分式联系极为密切,而因式分解方法的理论依据就是多项式乘法的逆变形。因式分解在解方程和函数变形等方面也经常使用,所以要足够重视。(二)充分发挥学生的积极性和主动性充分信任学生,努力发挥他们的主观能动性,让他们通过观察、思考、探究、讨论、归纳,主动地进行学习。勤于思考,善于思考,是学好数学的先决条件。在本章中,教
12、材安排了大量的“探究” “讨论”和“思考”栏目。通过“探究”栏目让学生体验研究问题,解决问题,最后探求出一般结论的过程,加深学生对问题的理解,使其既知其然,又知其所以然。本章共安排了 9 个“探究”栏目,许多重要结论或概念都是通过这个栏目归纳和总结出来的。在教学过程中应该尽可能地发挥“探究”栏目应有的作用。通过这个栏目,学生一方面可以体验获得结论的过程,另一方面可以获得成功的喜悦。“讨论”栏目为学生提供一个合作交流、互相启发以及相互促进的机会和平台,通过积极讨论和思想交流,可以拓展思维空间,促进数学思考,加深对问题的认识。例如,在15.3.1 节,通过对面积的讨论,可以发现平方差公式与面积之间
13、的内在联系,从而感受到几何与代数之间内在的统一性。再比如,在 15.4.2 节,通过“讨论”栏目,鼓励学生自觉地在讨论实例的基础上归纳出单项式相除的法则。总之,通过“讨论”栏目,学生可以共同探索,共同发现,共同发展。通过该栏目,学生可以感受到集体智慧的强大力量,进而培养集体意识和团队精神。课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,而“思考”栏目的安排也是为实现上述目标所做的设计之一。通过“思考”栏目,可以强有力地培养学生的创新精神和自学意识。在本章的教学中,要有意识地鼓励学生寻找“富有挑战性”的学习材料,并更多地进行数学活动和相互交流,在探究、讨论、思考的过程中获得知识
14、,培养能力。在本章的“数学活动”和“拓广探索”栏目中都设计了许多探究性的问题,教师应该适当地安排这些问题,鼓励学生积极思维,努力探索,努力提高数学思维水平。(三)把握好教学要求本章要求学生会进行简单的整式的加、减运算,会进行简单的整式乘法(其中的多项式相乘仅指一次式相乘)运算和除法运算。会推导平方差公式和完全平方公式,并了解公式的几何背景,能利用公式进行简单的计算。会用提公因式法和公式法进行因式分解(指数是正整数) 。多项式(升幂或降幂)的排列方式,不作为重点,但要适当渗透。整式是代数式中最基本的式子,为避免概念过分集中,本章介绍整式概念时不要求对代数式进行分类,避免过早地出现分式、有理式、无
15、理式等概念。单项式的系数是对式中的字母来说的,有数字系数与字母系数的不同。单项式的次数是式中所有的字母的指数的总和,而且次数仅仅与字母有关。要注意 规定为 ,指数 1不写出,切不可把 的指数当作 0。单独一个非零的数,也是单项式,叫做零次单项式。数 0 也可看作单项式,它没有任何确定的次数。这些不要讲给学生,以免概念太多,引起学生思维的混乱,反而影响教学效果。教学时,要注意使学生掌握单项式与多项式的关系,重点在于使学生认识多项式是几个单项式的和,每个单项式是该多项式的一个项。各项都应包括它前面的符号,这一点在教学时一定要特别予以强调。添括号法则是在去括号法则的基础上建立的,而去括号法则已经在第
16、一、二章学过。教科书根据第二章中应用去括号法则得到的两个等式,再把它们反过来,分析等式两边对应项的符号变化,得到添括号法则。教学时要向学生指出,应该把添上括号(或去掉括号)与括号前面的符号看成统一体,不能拆开。这对正确地运用法则,熟练地进行计算有很大帮助。要特别地向学生强调,添括号与去括号恰好是互逆的过程,检查添括号是否正确,可以用与去括号检验,反之亦然。本章系统地介绍了幂的运算性质、乘除运算法则以及乘法公式的知识,每个知识的发生过程都叙述得清晰明确。在教学过程中,要以教科书为基础,探讨知识发生的过程,并和学生一起研究如何经过由具体到抽象概括得到性质、法则以及公式,这将有助于训练学生的思维,使
17、学生领会到数学的思想和方法。对于乘法公式,要使学生领会平方差公式和完全平方公式都是有几何意义的。对于因式分解部分,只要求学生会灵活地运用提公因式法和公式法(平方差公式和完全平方公式)两种分解方法,对分组分解法和十字相乘法则不做要求。对于其他因式分解方法,教材只在选学栏目中给出了一种,即型式子的因式分解(十字相乘法) ,仅供学有余力的同学参考。在教学时可以适时向学生提出几个(应用因式分解)解方程的问题,这样可以使学生感受到学习因式分解的重要意义。(四)把握并突破知识的重点、难点和关键在本章,有较多的知识点属于重点或难点,有的知识点既是重点又是难点,下面分三部分进行具体分析。整式的加减合并同类项是
18、重点,也是难点。合并同类项是整式加减的知识基础,整式的加减主要是通过合并同类项把整式化简。熟练进行合并同类项,必须抓好三个关键环节的教学。首先要使学生掌握同类项的概念,会辨别同类项,准确地掌握判断同类项的两条标准(字母和字母指数) ;其次,要明确合并同类项的含义是把多项式中同类项合并成一项,经过合并同类项,多项式的项数会减少,这样多项式就得到了简化;最后,要使学生明确“合并”是指同类项的系数的增加,把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。进行整式的加减,关键是使学生明确整式加减的作用是把整式化简,化简的主要方法是合并多项式中的同类项。整式的乘除这部分内容的重点是整式的乘除
19、法,尤其是其中的乘法公式。从整式乘除的地位和作用可知,如果掌握不好这部分内容,将会给以后的学习带来极大的困难。因此要有针对性地加强练习,务必使学生对整式的乘除运算,特别是其中运用乘法公式进行计算达到熟练的程度。乘法公式的结构特征以及公式中字母的广泛含义学生不易掌握,运用时容易混淆,因此乘法公式的灵活运用是本部分的难点。在教学中要引导学生分析公式的结构特征,并在练习中与所运用公式的结构特征联系起来,对所发生的错误多做具体分析,以加深学生对公式结构特征的理解。添括号(或去括号)时,括号中符号的处理是本部分的另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)发法则进行。掌握法则
20、的关键是把添上括号(或去掉括号)与括号前面的符号看成统一体,不能拆开,学生不易理解这一点,要结合例题分析。学生在学习添括号(或去括号)时,感觉添括号难于去括号,括号前是“”号难于括号前是“+” 号。遇到括号前是“”号时,学生容易漏掉括号中一部分项的变号,教师在讲解例题时要强调法则中“各项”的含义。在整式的乘除中,单项式的乘除是关键。这是因为其他乘除都要“转化”为单项式的乘除。实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基石。因式分解 因式分解这部分内容的难点是因式分解的两种基本方法,即提公因式法和公式法,在教学中一定要让学生牢牢地掌握。因式分解的理论比较多(如因式分解的因子存在性与唯一性) ,分解因式的方法很多,变化技巧较高,这是本部分知识的难点,教学时一定要按照教学要求教学,防止随意拓宽内容和加深题目的难度。因式分解是整式乘法的逆向变形,教材中两种因式分解方法的引入,都紧紧扣住这一关键,采用对比的方法,从多项式乘法出发,根据相等关系得出因式分解公式和方法。(五)利用好选学内容