混合式步进电动机驱动系统电磁谐振问题的研究.doc

上传人:sk****8 文档编号:3553608 上传时间:2019-06-04 格式:DOC 页数:9 大小:99.50KB
下载 相关 举报
混合式步进电动机驱动系统电磁谐振问题的研究.doc_第1页
第1页 / 共9页
混合式步进电动机驱动系统电磁谐振问题的研究.doc_第2页
第2页 / 共9页
混合式步进电动机驱动系统电磁谐振问题的研究.doc_第3页
第3页 / 共9页
混合式步进电动机驱动系统电磁谐振问题的研究.doc_第4页
第4页 / 共9页
混合式步进电动机驱动系统电磁谐振问题的研究.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、混合式步进电动机驱动系统电磁谐振问题的研究童 怀 任 雷 郑大鹏摘要 根据步进电动机绕组的具体通电情况,从电路拓扑结构的周期性变化规律中归纳出了驱动系统的统一等效电路,在此基础上讨论了系统的电磁谐振问题,并计算了电路的谐振频率,通过理论计算和实验验证,指出驱动系统的电磁谐振是步进电机升速过程中产生振荡的一个重要原因。本文的研究在交流伺服系统的运行性能分析中具有一定的普遍意义。关键词: 步进电动机 等效电路 电磁谐振The Electric Resonance in the Hybrid Step Motor Drive SystemTong Huai (Guangdong University

2、 of Technology 510643 China)Ren Lei (Qinghua University 100084 China)Zheng Dapeng (Harbin Institute of Technology 150001 China)Abstract The paper gives the equivalent electric circuit of the hybrid step motor drive system, based on the work mode of the windings and the changing regularity of the cir

3、cuit. The electric resonance in the drive system, is analyzed and the electric resonance is regarded as a reason causing the oscillation of the step motor in low frequency band. The problem discussed in this paper has some popular significance in AC servo system.Key words: Step motor Equivalent elec

4、tric circuit Electric resonance1 前言混合式步进电动机的驱动系统本质上是一种开关电源,因此对驱动系统中电感、电容等参数的设计计算一般采用了开关电源,文献1,2中提出的方法。但是这种开关电源的负载是特定的步进电机,针对这一特定的负载,有必要建立数学模型作深入的研究。步进电动机的低频振荡一般认为是由于电机的机械谐振引起的 3 ,但是在开发设计驱动电源的实践中,发现电机的机械谐振点与低频振荡点相差较远;同时发现,如果合理调整驱动电源中电感值的大小,能有效地消除(或削弱)系统的低频振荡,使电机能顺利地从低速升到高速4 。与普通的 RLC 电路不同,步进电动机驱动电源的主

5、电路中存在开关管和续流二极管,根据绕组的具体通电情况,从电路拓扑结构的周期性变化规律中归纳出主回路的统一等效电路,这是本文研究驱动系统电磁谐振问题的思路。本文推导出了针对具体环分逻辑下系统的等效电路,讨论了系统的电磁谐振问题,并计算了电路的谐振频率,通过理论计算和实验验证,得出了驱动系统的电磁谐振是步进电动机升速过程中发生振荡的一个很重要的原因。本文的研究结论可以为步进电动机驱动系统的优化设计提供理论依据。电磁谐振问题在交流伺服系统中的存在具有一定的普遍性,而关于这方面研究的文献报导较少,本文以混合式步进电动机驱动系统为例来详细讨论这个问题是有意义的。2 驱动系统的统一等效电路研究系统的电磁谐

6、振问题,首先要推导出系统的等效电路。为了分析的方便,本文以一台三相混合式步进电动机为例来研究电机的驱动系统。步进电动机本质上是一台同步电机,三相混合式步进电动机等效于一台隐极同步电机的等效电路如图 1a5 。其中 La,L b,L c为各相绕组的自感;r a,r b,r c为各相绕组的电阻;M ab,Mbc,Mca为各相绕组间的互感;eoa,eob,eoc是旋转电动势,代表转子中永磁体在各相绕组中产生的磁链,因转子的转动在绕组中感应的电动势。 图 1 三相混合式步进电机的等效电路Fig.1 The equivalent electric circuit of the 3phase hybrid

7、 step motor为了推导驱动系统的统一等效电路,下面对图 1a 作进一步的分析。在图 1a 中,按电动机惯例规定各量的参考方向,可以列出三相绕组的电压方程电机的三相电流满足关系ia+ib+ic=0 (2)同时,考虑到电机结构的对称性,可以认为电机各相绕组间的互感相等MabM bcM caM (3)这样式(1)可以化为根据式(4),可以将图 1a 中的相绕组互感折合到绕组的自感中进行计算,于是可以得到电机的等效电路如图 1b 所示,这种对相绕组互感的处理有利于下面推导驱动系统的等效电路。图 2 为一台三相混合式步进电动机的升频升压驱动电源的主回路。与普通的 RLC 电路不同,这个电路中存在

8、开关管和续流二极管,根据绕组的具体通电情况,从电路拓扑结构的周期性变化规律中可归纳出主回路的统一等效电路。 图 2 三相混合式步进电机的升频升压驱动电路Fig.2 The drive circuit of the 3 phase hybrid step motor inrising frequency rising voltage mode绕组的具体通电情况是由开关管的环分逻辑来决定的,这里不妨设电机采用双六拍的工作方式一般情况下,电机绕组在一拍内不能完成续流过程,在图 2 中,逻辑状态 对应的从 PN看进去的等效电路分别如图3a、b、c 所示,图中为了画图的方便,将绕组的阻抗 Za、Z b、

9、Z c来代替电阻与电抗之和,并且在分析中忽略了开关管和续流二极管的管压降。因为在图 1b 中,根据电机三组之间的对称性有 (6)图 3 具体工作状态下电机绕组中电流和反电势的关系Fig.3 The relationship between the current and the EMFin phase windings因此要分析图 3 中三个图之间的内在关系,只要分析三个旋转电动势eoa、e ob、e oc之间的关系就可以了。旋转电动势是由于转子中永磁体在各相绕组中产生的磁链因转子的转动而在绕组中感应的电动势,因此分析旋转电动势之间的相位关系可以从分析相应极下定、转子齿间的相对位置关系入手。从

10、相位关系来看,图 3a 与图 3b 的差别在于 A、B、C 三相的顺序向后推移了 2/3 电角度,B 相取代了 A 相,C 相取代了 B 相,A 相取代了C 相,这就是说电机在按图 3a 的方式工作期间,A、B、C 三相极下定转子齿的相对位置关系和电机按图 3b 的方式工作期间,B、C、A 三相极下定转子齿的相对位置关系是相同的,这可以用三相旋转电动势之间的关系来描述(7)在 t 时刻电机三相绕组之间的关系可以用图 3a 来等效,在(t+2/3)时刻电机三相绕组之间的关系可以用图 3b 来等效,既然图3a 与图 3b 中阻抗 Za、Z b、Z c是相等的,而旋转电动势又满足式(7)的关系,因此

11、,在(t+2/3)时刻电机三相绕组之间的关系仍可以用图 3a来等效。再看图 3a 和图 3c,这两个电路中,前一个图是一相电流流入中点,两相电流流出中点,后一个图是两相电流流入中点,一相电流流出中点,两个电路中电流的方向正好相反。在混合式步进电动机中,左右两端转子的齿错开 180电角度,如果 A 相绕组中电流达到正的最大值时,A相所属极下左端转子齿与定子齿对齐(因这时左端为增磁方),那么当 A相绕组电流达到负的最大值时,A 相所属的极下右端转子齿会与定子齿对齐(因这时右端为增磁方)。这就是说,某相所属的极下左端定转子齿的错位情况与该相绕组中相电流方向相反时,右端定转子齿的错位情况是相同的。也可

12、以这样理解,图 3a 和图 3c 分别对应于相隔 1/2 个周期的两种逻辑状态,绕组中的电流方向相反,同时绕组中旋转电势的大小相等方向相反,因此在(t+)时刻电机三相绕组之间的连接关系仍可以用图 3a 来等效。综合上面的分析,可以将图 3 的三个图统一画成图 3a 的形式,更进一步,前面所述的六种逻辑状态都可以统一成图 3a 的形式,只是在分析时要注意旋转电动势的变化规律。这样我们根据绕组的具体通电逻辑,从电路拓扑结构的周期性变化规律中突破了开关元件的约束,归纳出主回路的统一等效电路如图 4 所示。 图 4 三相混合式步进电机驱动系统的统一等效电路Fig.4 The common equiva

13、lent electric circuit of the 3phase hybrid step motor drive system图 4 中,电机等效电路各参量的下标由 a、b、c 改成了 1、2、3,因为这时这些参数不再针对具体的某一相,而是反映了绕组间的一种联系。电感和电阻满足如下关系 (8)其中 Lm、r 由式(6)决定。旋转电动势 eo1,e o2,e o3在0,T/6(即一拍期间)按下式计算(9)在T/6,2T/6(即第二拍期间),旋转电动势 eo1、e o2、e o3重复前一拍的变化规律,如式(10)所示,以后的情况类推。(10)图 5 为 0所对应的 eo1的波形示意图。 图

14、5 e o1的波形示意图Fig.5 The diagram of e o13 谐振频率的计算对于图 4 的驱动系统的统一等效电路,这是一个多阶的 RLC 电路,分析电路的电磁谐振现象可以先列出它的状态方程(11)式中 v C电容 C 的端电压v i电感端的输入电压i L电感中的电流i1,i 2,i 3支路电流从式(9)可以得出旋转电动势之间满足关系eo1+eo2+eo30 (12)综合式(11)、(12),同时考虑到电感、电阻之间满足的关系式(6),消去 iL,i 1将得到一个三阶的微分方程。因电机绕组的电阻相对于绕组电抗要小很多,在计算系统的共振频率时为了分析上的方便,先忽略绕组电阻,这样将

15、得到一个二阶的微分方程(13)事实上,忽略绕组电阻相当于在分析弹簧质量系统的振动问题时忽略阻尼的影响,而文献6的分析表明,弱阻尼情况下强迫振动的共振频率和无阻尼振动时的共振频率相差并不大。因此,这里在电机绕组的电阻相对于绕组电抗要小很多的情况下忽略绕组的电阻来研究电路的共振频率是可行的。从式(13)可以求出图 4 驱动系统统一等效电路的角频率为 (14)从式(13)可见,引起电路发生电谐振的强迫振动源有两个,一个是电感端的输入电压 vi,其值的大小可以根据 PWM 开关管的开通和关断情况来确定,v i的波形示意图如图 6;另一个强迫振动源则是电机绕组中的旋转电动势 eo1,旋转电动势的波形示意

16、图如图 5。值得注意的是,统一等效电路图 4 中的“旋转电动势 eo1、e o2、e o3”与图 1 中的“旋转电动势 eoa、e ob、e oc”的意义是不同的,e o1、e o2、e o3的交变频率是eoa、e ob、e oc的 6 倍。 图 6 v i的波形示意图Fig.6 The diagram of v i对 vi和 eo1进行谐波分析,可以得到恒定分量、基波分量和高次谐波分量,如果其中某一分量(尤其是基波分量)的角频率恰好等于或接近电路的共振频率,且这一分量的幅值足够大,则可能引起电路的谐振。 4 实验研究针对一套具体的 130BYG3100 型三相混合式步进电动机驱动系统,系统中

17、与固有频率计算式有关的几个参数为 (15)这样按式(14)计算出系统的固有频率为 02167rad/s。在实验中发现,驱动系统在升频过程中在 360Hz 附近有一个明显的振荡区,这时用数字存储示波器拍到相电流的波形如图 7 所示。当外加脉冲频率为 360Hz 时,统一等效电路中旋转电动势 eo1的基波频率 0按下式进行计算(16)图 7 系统发生弱振荡时的相电流实拍波形Fig.7 The measured phase current approaching systemweak oscillation式中 f外加脉冲频率,Hzn电机运行的拍数旋转电动势 eo1中基波频率 0恰好和系统的角频率

18、0很接近,可以推断系统在 360Hz 附近的振荡是由于旋转电动势 eo1中基波的激励而引起的电磁谐振。为了进一步验证上面的结论,我们调整驱动器中电感 L 的匝数,使L 改变为 0.4mH,这时系统在 360Hz 附近的振荡区果然消失,电机可以顺利地升速,这时按式(14)计算系统的角频率为 01557rad/s。从理论上讲,电机在升速过程中总有一个外加脉冲频率会使旋转电动势 eo1中基波频率 0和系统的角频率 0很接近,但当 0降低时,满足谐振条件的外加脉冲频率也降低,旋转电动势 eo1中基波的幅值与外加脉冲频率成正比例地减小,这样谐振源的能量减小,机电系统产生振荡的强度被大大削弱。这就是上面调

19、整驱动器中电感 L 的匝数降低系统的角频率 0可以使系统顺利实现升速的原因。在驱动器的实际制作过程中,我们一般先固定电容 C 的大小,而电感的大小则试着选定,以保证流过开关管的电流不太大,且电机能顺利地升频运行。5 结论本文在研究步进电动机驱动系统的主电路时,根据绕组的具体通电情况,从电路拓扑结构的周期性变化规律中归纳出了主回路的统一等效电路,在此基础上研究了系统的电磁谐振问题,计算了电路的谐振频率,通过理论计算和实验验证,指出驱动系统的电磁谐振是步进电动机升速过程中发生振荡的一个很重要的原因。本文的研究可以为步进电动机驱动系统(驱动电源+电机)的优化设计提供理论依据。课题组在以无刷直流电机系

20、统作为电动汽车驱动装置的研究中,同样发现驱动系统存在电磁谐振问题,可以说电磁谐振问题在交流伺服系统中的存在具有一定的普遍性。因此本文的研究在交流伺服系统的运行分析中具有指导意义。广东省自然科学基金资助项目。童 怀 1994 年获哈尔滨工业大学博士学位,华中理工大学博士后,现于广东工业大学任教,副教授。任 雷 1997 年获哈工大博士学位,现为清华大学博士后。Tong Huai received the Ph.D.degree from Harbin Institute of Technology in 1994, he has worked as a Postdoctoral Research

21、 Fellow at Huazhong University of Science and Technology, and now is a vice professor of Guangdong University of Technology.作者单位:童 怀(广东工业大学电信系 510643)任 雷(清华大学 100084)郑大鹏(哈尔滨工业大学 150001)参考文献1 叶治政,叶靖国.开关稳压电源.北京:高等教育出版社,1988.2 张占松.高频开关电源.广州:广东科技出版社,1990.3 哈尔滨工业大学,成都电机厂.步进电动机.北京:科学出版社,1979.4 王宗培,孙礼明.混合式步进电机的新型驱动电路.微电机,1997(2)5 王宗培,童怀.混合式步进电机稳态运行的同步仿真分析.电工技术学报,1994,9(1)6 叶彦谦.常微分方程讲义.北京:人民教育出版社,1979.1999-01-08 收到稿件。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。