1、山西大学本科毕业论文- 1 -关联环境中量子关联动力学行为分析摘要 我们研究了关联环境下的两量子比特的量子关联动力学行为,并与纠缠动力学行为作了比较,分析了系统初始参数、量子比特间耦合强度、环境参数对它们的影响。我们采用几何量子失协关联度量,量化了两比特间的量子关联行为,同时利用纠缠度量的概念量化了两比特间的纠缠。通过分析发现,系统及环境各参数都对这两种量子关联动力学行为具有很大意义的影响。关键词 量子纠缠 量子失协 密度矩阵 纠缠度1.引言纠缠,作为量子关联,在量子信息、凝聚态物理等多体物理系统中起着关键作用。由于它的基本重要性,纠缠态的相关研究引起了人们浓厚地兴趣。然而,近几年人们发现,一
2、些量子任务(如 grover 搜索和单量子比特确定性量子计算等)即使在没有纠缠的情况下也可以量子加速实现,这表明纠缠并不是量子计算的唯一有用资源。换句话说,量子态中存在其它形式的量子关联,这些关联也对量子计算起到加速作用,这一点已经被 Lanyon 等人在全光学实验系统中得到证实1。为了量化比纠缠更为一般的量子关联,Ollivier 和 Zurek2引入了一个被他们称作量子失协的关联度量。这种度量可以俘获分离混合态中的量子关联,这是纠缠所不能的。量子失协的定义基于这样的事实,即两个等价的经典互信息的定义被推广到量子互信息时,它们并不相等。量子失协则定义为这两个量子互信息的差值。总的来说,量子失
3、协意在俘获一个量子态中的所有非经典关联,而纠缠度量只与非局域关联相关。人们发现,对于纯态来说量子失协等于纠缠和经典关联,且数值取 1。然而,对双比特混合态来说却并没有这么简单3。迄今为止,量子失协、纠缠和经典关联之间的关系还不清楚。最近,量子失协被广泛认为是比纠缠更为一般的量子关联,且可以作为一种全新的量子计算资源来考虑。人们在许多方面研究了量子失协的行为,利用它可以研究物理中的一些基本问题如度量量子相变4、描述麦克斯韦妖5等等。现今,有关量子失协的讨论,成为了当前国际研究的热门话题,正在引起越来越多人们的高度研究兴趣6-15。由于任何一个量子系统不可避免的要与周围的环境发生相互作用,从而造成
4、了量子相关性的丢失,山西大学本科毕业论文- 2 -进而使得量子态变成无用的状态,所以为了有效控制量子相干的目的,理解量子失协动力学行为自然成为一个十分有趣的研究话题16-20。最近,参考16和参考17,18,分别研究了马尔科夫和非马尔科夫环境中量子失谐的动力学行为。他们显示出量子失谐在环境的影响下比起纠缠具有更强的生命力。另外,人们发现,量子关联和经典关联衰减可以发生突然转变行为,在初始时间间隙量子关联可以不受影响等22。本文,我们正是基于量子失协的重要性展开对关联移相环境中的两量子比特的量子关联动力学的探讨,并与纠缠作比较。分析系统初始参数、量子比特间耦合强度、环境参数对它们的影响。2. 正
5、文 两量子比特哈密顿量为了研究两量子比特的动力学行为,我们需要获得它的时间演化密度矩阵。为此,我们首先给出所采用的理论模型。我们所考虑的哈密顿量模型为(1)z0ABABAHSS是两量子比特间的耦合强度, 是泡利算符;它们可分别表示为 ,ziii, ,。iiiiizi SgeSgeS,21我们选取希尔伯特空间为, (2) ,2,3,4ABABABABgeg那么系统的时间演化密度算符矩阵,可用量子刘维尔运动方程来表示: (3)1,HL其中,哈密顿量 由方程(1)给出;算子 为超算子, 包含了与量子比特相互作用的环境的影H响。当我们考虑的环境为关联移相环境时, 则变为L0, 22ABzzzzzzzi
6、iii ABABjkABLSSSS(4 )山西大学本科毕业论文- 3 -这里 和 分别是量子比特 和 的衰减率。 是 的联合衰减率。ABAB0AB在我们所选取的希尔伯特空间 中,将上式(4)进行展开可得到它的矩阵微分方1,23,程:,1212013121 -0 Bi, 04041313023- AAi, 23 232323, Bi , 42403424- iiA,2332,, ,343402434-Bi 314, , , , 。 12112423(5)由此,可以得到约化密度矩阵的最终形式。为了简单,我们设 ,则iMV0202,0t11,0sinisincos-102t 3220322 00 0
7、0 teMVtetMe tt ttt tt,0sinisincos102-t 2332032 00 00 teVtete tt ttt tt, 0sini-sincos021-t 3203232 000 00 tMeVtMtee ttttt tt山西大学本科毕业论文- 4 -, 0sinisincos021t 3203223 000 00 tMeVtMtee ttttt tt。 (6)t-tt-1t 324 我们考虑系统的初始条件为 ,即1004rr, (7)140021400iirer将(7)式代入(6)式后可得,41tr,tMeVMtsinsir2-r18t 002 ,tetsinsir2
8、-r18t 003 , cosinsincoi-s2rt 0300 tMtett, iiirt 02300 tttt。 (8)t-tt-1t 324 两量子比特中量子失协和纠缠动力学分析为了量化两比特间的量子关联行为,我们采用几何量子失谐关联度量23的概念。几何量子失谐关联度量采用 Hilbert-Schmidt 距离量化了给定量子态和零量子关联态间的量子关联。它被定义为23:山西大学本科毕业论文- 5 -(9) 20minABABgD其中 表示零量子关联态的集合,并且 是 Hilbert-Schmidt 规范。指标 暗示了0XTr2 A对 子系统进行测量。对两比特系统而言,零量子关联态可表A
9、(10)2211 pp是 子系统的正交基。 是 密度矩阵是 子系统的量子态。 和 是几率分布。21,2,B1p2对于一般形式的量子态(11) 31 3114i ijjijiAB Ryx而言,几何量子失谐可以写成如下形式, (12) max2g kx4DAB其中, , 是局域布拉赫矢量 是关1rxiABi TiT1ryi jiABijTrR联张量 的元素; 是泡利矩阵; ; 是矩阵 的最大R3,2i Tx321,xmakTRxK本征值。对于我们所考虑的量子态,不难证实 可进一步写成 ABgD, (13)2 221431341238 a,gABD k , , ,2314k 42k 431k但为了方
10、便表示,我们这里考虑归一化的几何量子失谐形式 , 满足()ABD()AB, (14)()ABgD为了量化两量子比特间的纠缠,我们采用纠缠度量 concurrence 的概念24,可定义为, (15)1234max0-C,其中 代表矩阵 的本征值。 的变化范围是 ,0iyyABAB C10C是对分离态而言,1 是指最大纠缠态。在图 1 我们画出了中心系统取不同纯度 时的量子失谐 随时间变化的图形。实线对应于r()ABD山西大学本科毕业论文- 6 -的情形,虚线对应于 的情况。其余共同参数为 , , 。1r0.7r0V.52图 1从图形可知,系统纯度 对量子失谐 有非常大的影响。纯度 越大, 越大
11、,r()ABDr()ABD衰减也越缓慢。另外,我们注意到在 时,即量子比特间没有直接耦合时,量子失谐单调衰减,0V直到 时完全消失。这一点不同于 时的情况,具体见下面的图形所示。t山西大学本科毕业论文- 7 -图 2图 2 我们画出了 时的 的时间演化图形。实线为 ,虚线为 ,其余参0V()ABD2V5V数与图 1 相同。由上图可知 越大, 振荡越快; 震荡振幅随时间的进行越来越小,且振荡变缓;较 时而言, 可以在更长的时间被更好的保持。0()AB图 3 我们分析了相位角 对 的影响。实线为 ,冲线为 ,虚线为D0/4,其余参数为 , , 。由图可知,相位角 对 的动力学行/21r0.5V()
12、ABD为也具有很大的影响:相位角 时, 单调衰减;随着 的增大, 出现了振荡()AB行为。较大的 比较小的 的振荡振幅更大,且振荡振幅随时间逐渐变小。另外, 时的 0比 的 在大时间尺度上的量值更大,表现的生命力更强。()ABD0()ABD山西大学本科毕业论文- 8 -图 3另外,我们通过数值计算发现, 的取值对 也有非常大的影响。 越大 具0()ABD0()ABD有更强的生命力,其幅度和振幅都增强,具体图型略。下面,我们来分析量子比特间的纠缠动力学行为。采用与图 1 相同的参数, , ,我们在图 4 画出了纠缠度 随时间变化的图形。可以看出,当0V.52()C时, 单调衰减,其衰减速率较量子
13、失协 要缓慢的多。而当 时,纠缠却发1r()CABD0.7r生了纠缠猝死现象,这一点大大不同于量子失协 。 的大小对纠缠动力学行为的影响可从图()r4 很容易看出来。山西大学本科毕业论文- 9 -图 4采用与图 2 相同的参数,我们画出了 随不同的 变化的图形。从图 5 可知, 对 动力()C()C学行为具有很有意义的影响。 时, 也发生了振荡演化。 越大 振荡行为越快,振幅0V()随时间的进行越来越小,且振荡变缓,较 时而言, 可以在更长的时间被更好的保持,这()一点非常类似于量子失协 的行为。除此之外,我们还能从图 5 看出来,当 时(虚线()ABD 0.7r所示) , 发生了突然死亡现象
14、以及重生现象。死亡时间随着时间的进行越来越长,直到某个阈值()C时间彻底完全消失。这一点不同于 , 仅仅在某些时间点消失。()AB()ABD图 5最后,我们通过验证发现,相位角 和参数 对 也具有非常有意义的影响。采用与图 3 相0()C同的参数,我们发现相位角 引起的 动力学变化非常类似于 ,具体图形略。()()ABD3.总结总而言之,我们研究了环境影响下的两量子比特中的量子关联动力学行为。通过分析发现,系统纯度 对于量子失协和纠缠行为都有着重要影响。随着纯度 r 的增大量子失协 与纠缠度r ()ABD山西大学本科毕业论文- 10 -无论呈单调还是震荡趋势衰减,其值都随 r 的增大而增大,且
15、衰减随 r 的增大而趋于缓慢。但()C纠缠度 的衰减速率较量子失协 要缓慢的多。更重要的是当 时,纠缠发生了纠()ABD0.7缠猝死现象,这一点大大不同于量子失协 。耦合强度 对与量子失谐 纠缠度V()ABD也有非常大的影响。我们注意到在 时,即量子比特间没有直接耦合时,量子失协()C0V与纠缠度 均呈单调衰减形式,直到 时完全消失。 时,量子失谐ABD()Ct0纠缠度 都发生了振荡演化。 越大它们的振荡行为越快,振幅随时间的进行越来越小,()且振荡变缓,较 时而言,量子失协 与纠缠度 都可以在更长的时间被更好的保持。0V()ABD()C但是当 时,纠缠度 却发生了纠缠猝死现象以及重生现象。死
16、亡时间随着时间的进行越来.7r()C越长,直到某个阈值时间彻底完全消失。这一点不同于量子失协 , 仅仅在某些时()ABD()AB间点消失。相位角 对量子失协 与纠缠度 的动力学行为也具有很大的影响:相位角()ABD()C时,量子失协 与纠缠度 均单调衰减;随着 的增大,它们都出现了振荡行为。0()AB越大振荡振幅越大,且振荡振幅随时间逐渐变小。 时量子失协 与纠缠度 在大0()ABD()C时间尺度上的量值均更大,表现的生命力更强。参考文献1 B. P. Lanyon, M. Barbieri, M. P. Almeida, A. G. White, Experimental Quantum Computing without Entanglement, Phys. Rev. Lett. (2008) 101, 200501.2 H. Ollivier, W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. (2001) 88, 017901.3 A. Al-Qasimi, D. F. V. James, A Comparison of the Attempts of Quantum Discord and Quantum