1、第二单元 牛顿运动定律的应用第3课时 整体法与隔离法 临界问题,必修1 第三章力与运动,基础回顾,考点一 基本概念和特征,1连接体(1)连接体与隔离体:_物体相互连接组成的物体系统称为连接体,如果把其中_物体隔离出来,该物体即为隔离体(2)外力和内力:如果以系统为研究对象,受到_的力,这些力就是该系统受到的外力,而系统内_则称为内力应用牛顿第二定律求系统的加速度时,不考虑系统的_如果把某物体隔离出来作为研究对象,则这些力将转化为隔离体的_,2整体法含义:所谓整体法就是指对物理问题的整个系统或_进行研究的方法3隔离法含义:所谓隔离法就是指对物理问题的某些研究对象或_、_从系统或全过程中隔离出来进
2、行研究的方法答案:1.(1)两个或两个以上某个(2)系统以外相互作用的力内力外力2.整个过程3.某些过程状态,要点深化,1应用整体法的几种情况(1)当只涉及研究系统而不涉及系统内某些物体的力和运动时,可整体分析对象(2)当可采用多种方法解题时,可整体优化解题方法2应用隔离法的几种情况(1)求解物体间的相互作用时(2)运用适用于单个或可视为单个物体的物理规律(如牛顿运动定律、动能定理)解题时,3运用隔离法和整体法解题的技巧对于一系列物体,可以把其中“几个物体”看成一个小整体,“另外几个物体”也看成一个小整体,对两个小整体单独作受力分析、解答这就是隔离法和整体法的整合,基础回顾,考点二 临界与极值
3、问题,在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语的,往往会有_现象,此时要采用假设或_法,看物体在不同的加速度时,会有哪些现象发生,尽快找出_条件,求解临界值答案:临界极限临界,要点深化,1假设或极限法分为三种类型:定性分析、定量分析和综合分析(1)定性分析:利用假设或极限法进行定性分析,可使问题迅速得到解答(2)定量计算:在物理解题,特别是解答选择题时,采用假设或极限法,选择适当的极限值最大值、最小值、零值、无限大值以及临界值等代入备选答案,会使解题收到意想不到的简化效果(3)综合分析:对于综合性
4、较强的题目,由于其隐含条件较深,或者隐含条件是应该熟悉的临界条件或者是重要的规律和结论时,再用假设或极限法分析,就必须将定性分析与,定量分析有机结合起来,灵活地运用物理知识和数学知识,才能“准而快”地对问题作出回答. 2寻找临界条件、解决临界问题的基本思路(1)认真审题,详尽分析问题中变化的过程,(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量(自变量与因变量);(3)探索因变量随自变量变化时的变化规律,要特别注意相关物理量的变化情况;(4)确定临界状态,分析临界条件,找出临界关系显然分析变化过程,确定因变量随自变量变化的规律,是解决问题的关键,题型一运用整体法与隔离法解题必须弄
5、清牛顿第二定律 的同体性,牛顿第二定律所指的加速度与合外力和质量都是同属一个物体的,所以,运用整体法与隔离法解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚,一人站在吊台上,用如图所示的定滑轮装置拉绳把吊台和自己提升上来图中跨过定滑轮的两段绳都认为是竖直的且不计摩擦吊台的质量为m15 kg,人的质量为M55 kg,起动时吊台向上的加速度是a0.2 m/s2,这时人对吊台的压力(g9.8 m/s2):,A大小为700 N,方向竖直向上B大小为350 N,方向竖直向上C大小为200 N,方向竖直向下D大小为204 N,方向竖直向下,解析:选人和吊台组成的系统为研究对象,受力如图(a
6、)所示,F为绳的拉力由牛顿第二定律有:2F(Mm)g(Mm)a则拉力大小为:F 350 N,再选人为研究对象,受力情况如图(b)所示,其中FN是吊台对人的支持力由牛顿第二定律得:FFNMgMa,故FNM(ag)F200 N.,由牛顿第三定律知,人对吊台的压力与吊台对人的支持力大小相等,方向相反,因此人对吊台的压力大小为200 N,方向竖直向下答案:C,题型训练,1如图所示,不计绳的质量及绳与滑轮的摩擦,物体A的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时,物体A的加速度为a1.当在B端施以Fmg的竖直向下的拉力作用时,A的加速度为a2.则a1与a2的大小关系是(),Aa1a2Ba1a2
7、Ca1a2 D无法确定,解析:在B端挂重物时,重物和物体A一样都具有质量,它们具有了相同大小的加速度,即重物的重力mg将作为物体A和重物本身产生加速度的外力,由整体法和牛顿第二定律得a1 ;在B端施以Fmg的拉力作用时,拉力者提供给了物体A足够的拉力F,而本身所具有的加速度就与物体A的加速度相等,即a2 .所以a1a2,C正确答案:C,题型二 运用整体法与隔离法解题必须总结“习题定律”,利用物理知识解决每一个物理习题之后,要注意对结果进行分析总结,发现答案中存在的“特殊格式”,以利于套与其他相类似的习题,快速解答类型题因此,这些由解题得到具有规律性的习题结论称为“习题原理”运用整体法与隔离法解
8、题之后可以总结出一些“习题原理”,用质量为m、长度为L的绳沿着光滑水平面拉动质量为M的物体,在绳的一端所施加的水平拉力为F,如图所示,求:(1)物体与绳的加速度;(2)绳中各处张力的大小(假定绳的质量分布均匀,下垂度可忽略不计),解析:(1)以物体和绳整体为研究对象,根据牛顿第二定律可得:a .,(2),以物体和靠近物体长度为x的绳为研究对象,则其质量为m,如图所示根据牛顿第二定律可得:Fx(Mm )a(M x) .答案:(1) ;(2)(M x)点评:本题说明离作用力越远,绳子的张力越小的规律,题型训练,五个质量相等的物体置于光滑的水平面上,如图所示现向右施加大小为F、方向向右的水平恒力,则
9、第3个物体对第4个物体的作用力等于(),A. F B. FC. F D. F,解析:把1、2和3看作一个小整体,4和5看作另一个小整体,对4和5这个小整体做受力分析知它们仅受1、2和3小整体的力的作用,这个作用力也就是第3个物体对第4个物体的作用力F34.设每个物体的质量为m.根据牛顿第二定律,有:F342ma2m F从1物体依次往后推,每两个物体间的作用力分别为: F、 F、 F、 F.答案:B,题型三运用整体法与隔离法解题必须学会分析临界问题,相互接触的物体间可能存在弹力相互作用,但是,如果施加于物体的外力是变力,物体接触面间的弹力一般会发生变化,在接触面间弹力变为零时,物体将要分离抓住相
10、互接触物体分离的这一条件,就可顺利解答相关问题下面举例说明:,如图所示,,质量分别为mA1 kg和mB 2 kg的A、B两物块并排放在光滑水平面上,A受到向右推力FA92t(N)作用,B受到向右拉力FB2t(N)作用从t 0开始计时,则(),A当t3 s时,A、B开始分离B当t4.5 s时,A、B开始分离CA、B分离之前整体做加速度相同的匀加速直线运动DA、B分离之后A、B各做加速度不同的匀加速直线运动,解析:A、B分离之前,对于A、B整体,根据牛顿第二定律有:a 3 m/s2设A、B间的作用为f,以B为研究对象,根据牛顿第二定律可得:fFBmBa,解得f62t(N)当t3 s时f0,A、B两
11、物体开始分离此后A做加速度逐渐减小的加速运动,当t4.5 s时A物体的加速度为零而速度不为零t4.5 s后,A所受合外力反向,即做减速运动B一直做加速度逐渐增大的加速运动答案:AC点评:不能以物体所受的合外力为零来判断接触物体的分离要以接触物体在加速运动状态下接触面间的力为零为判断根据本题也可先分别求两个物体的加速度,再讨论前面物体的加速度大于或等于后面物体的加速度时双方开展分离,从而求出时间的极限,题型训练,3如图所示,质量为m的滑块在光滑斜面体上并用绳拴着,斜面倾角为,斜面体质量为M,斜面体置于光滑水平面上,为了使滑块不离开斜面,作用于斜面体上水平向左的拉力F可能()A大于(Mm)gcot
12、 B等于(Mm)g cot C小于(Mm)gcot D无法确定,解析:以滑块为研究对象,滑块不离开斜面的临界条件是:滑块仍与斜面接触,但滑块与斜面间的接触力为零,只受重力和绳子的拉力,如右图所示设滑块向左的加速度a.根据牛顿第二定律,有:mgcot ma 解得:agcot 以滑块和斜面体为研究对象,根据牛顿第二定律,有:F(Mm)a,即滑块不离开斜面,作用于斜面体上的水平向左的拉力F(Mm)gcot .答案:BC,警示 错用平衡状态解加速状态中的弹簧伸长问题,如图所示,一弹簧秤秤盘Q的质量m1.5 kg,盘上放一质量为M10.5 kg的物体P,弹簧质量不计,其劲度系数k800 N/m,系统处于
13、静止状态现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动已知在最初0.2 s内F是变化的,在0.2 s后是恒定的求在0.2 s内的加速度?(g取10 m/s2),错解:初始状态未加力F时,设弹簧的压缩量x0,根据平衡条件有:kx0(mM)g代入数据解得:x00.15 m对Q,此时它受到的力为自身的重力mg和弹簧对其向上的弹力kx1,根据平衡条件有:kx1mg解得:x10.01875 m由运动学知识有:x0x1 at2代入已知数据解得:a6.56 m/s2,分析纠错:这样的解答忽视了物体P与盘Q在分离之前都一起做匀加速运动的情况,造成错解正确的解答是:初始状态未加力F时,设弹簧的压缩量x0,根据平衡条件有:kx0(mM)g 代入数据解得:x00.15 m加力F后,随着P与Q的不断上升,弹簧的弹力减小,P与Q之间的压力也减小,在压力为零时,双方开始分离,F开始为恒力设此时弹簧的压缩量为x1,对盘Q,根据牛顿第二定律,有kx1mgma由运动学知识有:x0x1 at2式联立并代入已知数据解得: x10.03 m,a6 m/s2.答案:6 m/s2,