PCB的阻抗控制与前端仿真(SI9000的应用).doc

上传人:hw****26 文档编号:3764438 上传时间:2019-07-13 格式:DOC 页数:13 大小:583KB
下载 相关 举报
PCB的阻抗控制与前端仿真(SI9000的应用).doc_第1页
第1页 / 共13页
PCB的阻抗控制与前端仿真(SI9000的应用).doc_第2页
第2页 / 共13页
PCB的阻抗控制与前端仿真(SI9000的应用).doc_第3页
第3页 / 共13页
PCB的阻抗控制与前端仿真(SI9000的应用).doc_第4页
第4页 / 共13页
PCB的阻抗控制与前端仿真(SI9000的应用).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、PCB 的阻抗控制与前端仿真(SI9000 的应用)PCB 传输线简介:随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。在实际情况中,需要在数字边际速度高于 1ns 或模拟频率超过 300Mhz时控制迹线阻抗。PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的 PCB 设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。这

2、就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。阻抗控制阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。影响PCB 走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。PCB 阻抗的范围是 25 至 120

3、欧姆。在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。迹线和板层构成了控制阻抗。PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定: 信号迹线的宽度和厚度 迹线两侧的内核或预填材质的高度 迹线和板层的配置 内核和预填材质的绝缘常数 PCB 传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。微带线(Microstrip):微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板

4、的表面之上,以电源或接地层为参考。如下图所示:注意:在实际的 PCB 制造中,板厂通常会在 PCB 板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:带状线(Stripline):带状线是置于两个参考平面之间的带状导线,如下图所示,H1 和 H2 代表的电介质的介电常数可以不同。上述两个例子只是微带线和带状线的一个典型示范,具体的微带线和带状线有很多种,如覆膜微带线等,都是跟具体的 PCB 的叠层结构相关。用于计算特性阻抗的等式需要复杂的数学计算,通常使用场求解方法,其中包括边界元素分析在内,因此使用专门的阻抗计算软件 SI9000,我们所需做的就是控

5、制特性阻抗的参数:绝缘层的介电常数 Er、走线宽度 W1、W2(梯形)、走线厚度 T 和绝缘层厚度H。对于 W1、W2 的说明:此处的 W=W1,W1=W2.规则:W1=W-A W-设计线宽 AEtch loss (见上表)走线上下宽度不一致的原因是:PCB 板制造过程中是从上到下而腐蚀,因此腐蚀出来的线呈梯形。走线厚度 T 与该层的铜厚有对应关系,具体如下:铜厚 COPPER THICKNESS Base copper thk For inner layer For outer layer H OZ 0.6mil 1.8mil 1 OZ 1.2MIL 2.5MIL 2 OZ 2.4MIL 3

6、.6MIL绿油厚度: *因绿油厚度对阻抗影响较小,故假定为定值 0.5mil。我们可以通过控制这几个参数来达到阻抗控制的目的,下面以安维的底板 PCB为例说明阻抗控制的步骤和 SI9000 的使用:底板 PCB 的叠层为下图所示:第二层为地平面,第五层为电源平面,其余各层为信号层。各层的层厚如下表所示:Layer Name Type Material Thinkness ClassSURFACE AIR TOP CONDUCTOR COPPER 0.5 OZ ROUTINGDIELECTRICFR-4 3.800MIL L2-INNER CONDUCTOR COPPER 1 OZ PLANED

7、IELECTRICFR-4 5.910MIL L3-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRICFR-4 33.O8MIL L4-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRICFR-4 5.910MIL L5-INNER CONDUCTOR COPPER 1 OZ PLANEDIELECTRICFR-4 3.800MIL BOTTOM CONDUCTOR COPPER 0.5 OZ ROUTINGSURFACE AIR 说明:中间各层间的电介质为 FR-4,其介电常数为 4.2;顶层和底层为裸层,直接与空

8、气接触,空气的介电常数为 1。需要进行阻抗控制的信号为:DDR 的数据线,单端阻抗为 50 欧姆,走线层为 TOP 和 L2、L3 层,走线宽度为5mil。时钟信号 CLK 和 USB 数据线,差分阻抗控制在 100 欧姆,走线层为 L2、L3 层,走线宽度为 6mil,走线间距为 6mil。对于计算精度的说明:1、对于单端阻抗控制,计算值等于客户要求值;2、对于其他特性阻抗控制:对于其它所有的阻抗设计(包括差别和特性阻抗) *计算值与名义值差别应小于的阻抗范围的 10%: 例如:客户要求:60+/-10%ohm 阻抗范围=上限 66-下限 54=12ohms 阻抗范围的 10%=12X10%

9、=1.2ohms计算值必须在红框范围内。其余情况类推。下面利用 SI9000 计算是否达到阻抗控制的要求:首先计算 DDR 数据线的单端阻抗控制:TOP 层:铜厚为 0.5OZ,走线宽度为 5MIL,距参考平面的距离为 3.8MIL,介电常数为 4.2。选择模型,代入参数,选择 lossless calculation,如图所示:计算得到单端阻抗为 Zo=55.08ohm,与要求相差 5 欧姆。根据板厂的反馈,他们将走线宽度改为 6MIL 以达到阻抗控制,经过验证,在宽度 W2=6MIL,W1=7MIL的情况下,计算得到的单端阻抗为 Zo=50.56 欧姆,符合设计要求。L2 层:在 L2 层

10、的走线模型如下图所示:代入参数进行计算得到如下图所示:计算得到单端阻抗为 Zo=50.59 欧姆,符合设计要求。同理可以得到 L3 层的单端阻抗,在此不再赘述。下面计算差分阻抗控制:由 PCB 设计可知,底板 PCB 中时钟走线在 L3 层,USB 数据线在 L2 层,走线宽度均为 6MIL,间距为 6MIL。时钟信号选择的模型如下所示:按照提供给板厂的数据计算得到的结果如下图所示:根据板厂的反馈,差分阻抗只能做到 85 欧姆,与计算结果接近(他们可以微调板层厚度,但不能调线)。但是改变线间距为 12MIL 时,计算得到的差分阻抗为 92.97 欧姆,再将线宽调为 5MIL 时,差分阻抗为 9

11、8.99 欧姆,基本符合设计要求。经验小结1、当差分走线在中间信号层走线时,差分阻抗的控制比较困难,因为精度不够,就是说改变介质层厚度对差分阻抗的影响不大,只有改变走线的间距才对差分阻抗影响较大。但是当走线在顶层或底层时,差分阻抗就比较好控制,很容易达到设计要求,通过实际计算发现,重要的信号线最好走表层,容易进行阻抗控制,尤其是时钟信号差分对。2、在 PCB 设计之前,首先必须通过阻抗计算,把 PCB 的叠层参数确定,如各层的铜厚,介质层的厚度等等,还有差分走线的宽度和间距都需要事先计算得出,这些就是 PCB 的前端仿真,保证重要的信号线的阻抗控制满足设计要求。3、关于介电常数 Er 的问题:

12、以我们使用最多的 FR-4 介质的材料板为例:实际多层板是芯板和压合树脂层堆叠而成,其芯板本身也是由半固化片组合而成。常用的三种半固化片技术指标如下表 1 所示。半固化片组合的介电常数不是简单的算术平均,甚至在构成微带线和带状线时的 Er 值也有所不同。另一方面,FR-4 的 Er 也随信号频率的变化有一定改变,不过在 1GHz 以下一般认为 FR-4 材料的 Er 值约 4.2。通常计算时采用 4.2。4、在实际的阻抗控制中,一般采用介质为 FR-4,其 Er 约 4.2,线条厚度 t 对阻抗影响较小,实际主要可以调整的是 H 和 W,W(设计线宽)一般情况下是由设计人员决定的,但在设计时应

13、充分考虑线宽对阻抗的配合性和实际加工精度。当然,采用较小的 W 值后线条厚度 t 的影响就不容忽视了。H(介质层厚度)对阻抗控制的影响最大,实际 H 有两类情况:一种是芯板,材料供应商所提供的板材中 H 的厚度也是由以上三种半固化片组合而成,但其在组合的过程中必然会考虑三种材料的特性,而绝非无条件的任意组合,因此板材的厚度就有了一定的规定,形成了一个相应的清单,同时 H 也有了一定的限制。如 0.17mm 1/1的芯板为 2116 1,0.4mm 1/1 的芯板为 10802+76281 等。另一种是多层板中压合部分的厚度:其方法基本上与前相同但需注意铜层的损失。如内电层间用半固化片进行填充,

14、因在制作内层的过程中铜箔被蚀刻掉的部分很少,则半固化片中树脂对该区的填充亦很少,则半固化片的厚度损失可忽略。反之,如信号层之间用半固化片进行填充,由于铜箔被蚀刻掉的部分较多,则半固化片的厚度损失会很大且难以估计。因此,有人建议在内层的信号层要求铺铜以减少厚度损失。(上述资料来源于:P C B 高速数字设计中的阻抗控制(西南电子电信技术研究所 陈飞)5、特征阻抗与传输线的宽度是成反比的,宽度越宽,阻抗越低,反之则阻抗更高。6、在有些板的设计要求中对板层厚度有限制时,此时要达到比较好的阻抗控制,采用好的叠层设计非常关键。从实际的计算中可以得出以下结论:a. 每个信号层都要有参考平面相邻, 能保证其

15、阻抗和信号质量; b. 每个电源层都要有完整的地平面相邻, 使得电源的性能得以较好的保证;7、关于差分走线的线宽和间距对阻抗控制的讨论:通过软件计算发现,改变差分对的间距对阻抗控制的影响较大,但是这里涉及到另一个问题,就是差分对的耦合问题。差分对耦合的主要目的是增强对外界的抗干扰能力和抑止 EMI。耦合分为紧耦合方式( 即差分对线间距小于或等于线宽) 和松耦合方式。 如果能保证周围所有的走线离差分对较远(比如远远大于 3 倍的线宽),那么差分走线可以不用保证紧密的耦合,最关键的是保证走线长度相等即可。(可以参见 Johnson 的信号完整性网站上的关于差分走线的阐述,他就要求他的layout

16、工程师将差分线离得较远,这样可以方面绕线)。只是目前大多数多层高速的 PCB 板走线空间很紧密,根本无法将差分走线和其它走线隔离开来,所以这时候保持紧密的耦合以增加抗干扰能力是应该的。紧耦合不是差分走线的必要条件,但是在空间不够时走线采用紧耦合方式能够增强差分走线的抗干扰能力。因此,对于差分对的阻抗控制问题,怎么调节各个参数需要综合考虑上述因素,择优选择。一般情况下不轻易调整差分对的间距和线宽。延伸:差分对走线的 PCB 要求(1)确定走线模式、参数及阻抗计算。差分对走线分外层微带线差分模式和内层带状线差分模式两种,通过合理设置参数,阻抗可利用相关阻抗计算软件(如 POLAR-SI9000)计

17、算也可利用阻抗计算公式计算。(2)走平行等距线。确定走线线宽及间距,在走线时要严格按照计算出的线宽和间距,两线间距要一直保持不变,也就是要保持平行。平行的方式有两种: 一种为两条线走在同一线层(side-by-side),另一种为两条线走在上下相两层(over-under)。一般尽量避免使用后者即层间差分信号,因为在 PCB 板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻精度,以及层压过程中的介质流失,不能保证差分线的间距等于层间介质厚度,会造成层间差分对的差分阻抗变化。困此建议尽量使用同层内的差分。(3).紧耦合原则。在计算线宽和间距时最好遵守紧耦合的原则,也就是差分对线间距小于或等于线宽。当两条差分信号线距离很近时,电流传输方向相反,其磁场相互抵消,电场相互耦合,电磁辐射也要小得多。(4).走短线、直线。为确保信号的质量,差分对走线应该尽可能地短而直,减少布线中的过孔数,避免差分对布线太长,出现太多的拐弯,拐弯处尽量用 45或弧线,避免 90拐弯。(5).不同差分线对间处理。差分对对走线方式的选择没有限制,微带线和带状线均可,但是必须注意要有良好的参考平面。对不同差分线之间的间距要求间隔不能太小,至少应大于35 倍差分线间距。必要时在不同差分线对之间加地孔隔离以防止相互问的串扰。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。