1、单项式的概念:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。目录1定义2概念3格式4计算 加减法则 乘法法则 除法法则1定义编辑单项式中的数字因数叫做这个单项式的系数(Coefficient) ,一个单项式中,所有字母的指数的和叫做这个单项式的次数(Degree of a monomial)。任何一个非零数的零次方等于1。注意:1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x 不是单项式。2.单独的一个数字或字母也是单项式。例如,1和 x2y 也是单项式。3.单项式表示数与字母相乘时,通常把数写在前面。4.如果一个单
2、项式,只含有字母因数,如果是正数的单项式系数为 1,如果是负数的单项式系数为1 。5.如果一个单项式,只含有数字因数,那么它的次数为0 。2概念编辑单项式:任意一个字母和数字的积的形式的单项式。 (除法中有:除以一个数等于乘这个数的倒数) 。2.单独一个字母或数字也叫单项式。3.字母不能作为分母, 除外。(单项式是整式,而不是分式)a,5,X,2XY,都是单项式,而 0.5m+n,不是单项式。4,0也是数字,也属于单项式。5,有些分数也属于单项式。单项式的次数是指单项式中所有字母因数的指数和这个名词是清代数学家李善兰译书时根据原词概念汉化的。单项式是字母与数的乘积。单项式的次数:一个单项式中,
3、所有字母的指数的和叫做这个单项式的次数。单项式的系数:单项式中的数字因数。如:2xy 的系数是2;-5zy 的系数是-5字母 t 的指数是1,100t 是一次单项式;在单项式 vt 中,字母 v 与 t 的指数的和是2,vt 是二次单项式。如:xy ,3,a z,ab,b . 都是单项式。用运算符号把表示数的字母或数连接起来的式子叫代数式。代数式不能含有“” 、 “=”、 “”、 “”符号等单项式书写规则:数与字母相乘时,数在字母前;乘号可以省略为点或不写;除法的式子可以写成分数式;带分数与字母相乘,带分数要化为假分数单项式是几次,就叫做几次单项式字母不能在分母中(因为这样为分式,不为单项式)
4、“”是已知常数,写在字母前数后(例如:2r),不是字母,读 pi。3格式编辑1.数字写在字母的前面,应省略乘号。5a 、16xy 等2. 是常数,因此也可以作为系数。3.若系数是带分数,要化成假分数。4.当一个单项式的系数是1或-1时, “1”通常省略不写,如(-1)ab 写成 -ab 等。5.在单项式中字母不可以做分母, 分子可以。6.单独的数“0”的系数是零,次数也是零。7.常数的系数是它本身,次数为零4计算编辑加减法则单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。例如:3a+4a=7a ,9a-2a=7a 等。同时还要运用到去括号法则和添括号法则。乘法法则单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例如:3a4a=12a2除法法则同底数幂(次方)相除,底数不变,指数相减。例如:9a103a5=3a5