1、7.1 平面直角坐标系(一),如何确定直线上点的位置?,在直线上规定了原点、正方向、单位长度就构成了数轴。,数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标 例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。反过来,知道数轴上一个点的坐标,这个的点在数轴上的位置也就确定了。,雁塔,中心广场,钟楼,大成殿,科技大学,碑林,影月湖,如图,是某城市旅游景点的示意图。(1)你是如何确定各个景点的位置的?,雁塔,中心广场,钟楼,大成殿,科枝大学,碑林,影月湖,如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“
2、碑林”的位置吗?“大成殿”的位置呢?,x轴或横轴,y轴或纵轴,原点,两条数轴互相垂直公共原点 组成平面直角坐标系,平面直角坐标系,第一象限,第二象限,第三象限,第四象限,注 意:坐标轴上的点不属于任何象限。,A,A的横坐标为4,A的纵坐标为2,有序数对(4, 2)就叫做A的坐标记作:A(4,2),B(-4,1),M,N,B,C,A,E,D,( 2,3 ),( 3,2 ),( -2,1 ),( -4,- 3 ),( 1,- 2 ),例1、写出图中A、B、C、D、E各点的坐标。,-2,-3,o,-1,1,在如图建立的直角坐标系中描出下列各组点,并将各组的点用线段依次连接起来.,(0 , 6), (
3、-4, 3), (4 , 3),(-2 , 3), (-2 , -3), (2 , -3), (2 , 3),观察所得的图形,你觉得它象什么?,-4,-1,4,A(-4,3),B(4,3),C(-2,3),D(2,3),E(-2,-3),F(2,-3),(0 , 6),写出图中多边形ABCDEF各个顶点的坐标。,(-2,0),(0,-3),(3,-3),(4,0),(3,3),(0,3),点B与点C的纵坐标有什么特点,线段BC的位置 有什么特点?,线段CE的位置 有什么特点?,坐标轴上点的坐标有什么特点?,平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同;横轴上的点纵坐标
4、为0;纵轴上的点横坐标为0。,1,1,(-3,4),(-5,-2),(3,-2),(5,4),A与D、B与C的纵坐标相同吗?为什么?A与B,C与D的横坐标相同吗?为什么?,x,y,写出平行四边形ABCD各个顶点的坐标。,雁塔,中心广场,钟楼,大成殿,科技大学,碑林,影月湖,各个景点的坐标为:雁塔(0,3)碑林(3,1)钟楼(-2,1)大成殿(-2,-2)科技大学(-5,-7)影月湖(0,-5)中心广场(0,0),你知道吗?,早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午线为标准的,这两条线从局部上可以看成是平面内互相垂直的两条直线。所
5、以笛卡尔的方法是在平面内画两条互相垂直的数轴,其中水平的数轴叫x轴(或横轴),取向右为正方向,铅直的数轴叫y轴(或纵轴),取向上为正方向,它们的交点是原点,这个平面叫坐标平面。,“标点”与“报坐标”比赛: 一位报坐标,另一位标出相应点所在的位置;反过来,一位指点,另一位报出相应的坐标,看谁既快又正确。,比一比:,告诉大家本节课你的学会了什么!,小结:这节课主要学习了平面直角坐标系的有关概念和一个最基本的问题,坐标平面内的点与有序数对是一一对应的,渗透了数形结合的思想等。 掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y),写出图
6、中A、B、C、D、E各点的坐标。它们分别在哪个象限内,( 3,2 ),( -2,1 ),( -4,- 3 ),( 1,- 2 ),( 2,3 ),早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午线为标准的,这两条线从局部上可以看成是平面内互相垂直的两条直线。所以笛卡尔的方法是在平面内画两条互相垂直的数轴,其中水平的数轴叫x轴(或横轴),取向右为正方向,铅直的数轴叫y轴(或纵轴),取向上为正方向,它们的交点是原点,这个平面叫坐标平面。这节课我们来学习平面直角坐标系。,如何用一对数来表示平面内的点的位置呢?,结论,纵坐标相同的点的连线平行于x轴,横坐标相同的点的连线平行于y轴,坐标轴的点至少有一个是,