1、小学奥数行程问题分类讨论 行程问题是小升初考试和小学四大杯赛四大题型之一。具体题型变化多样, 形成 10 多种题型,都有各自相对独特的解题方法。现根据四大杯赛的真题研究 和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。 一、一般相遇追及问题。包括一人或者二人时(同时、异时)、地(同地、异 地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。在杯赛中大量 出现,约占 80%左右。建议熟练应用标准解法,即 s=vt 结合标准画图(基本 功)解答。由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无 法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。 二、复杂
2、相遇追及问题。 (1)多人相遇追及问题。比一般相遇追及问题多了一个运动对象,即一般我 们能碰到的是三人相遇追及问题。解题思路完全一样,只是相对复杂点,关键 是标准画图的能力能否清楚表明三者的运动状态。 (2)多次相遇追及问题。即两个人在一段路程中同时同地或者同时异地反复 相遇和追及,俗称反复折腾型问题。分为标准型(如已知两地距离和两者速度, 求 n 次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数) 和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时 相遇、追及的次数)。 标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相 遇、追及时间的方法,
3、再求距离和次数就容易得多。如果用折线示意图只能大 概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。 一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出 发的情况少见,所以不赘述): 单程相遇时间:t 单程相遇=s/(v 甲+v 乙) 单程追及时间:t 单程追及=s/(v 甲-v 乙) 第 n 次相遇时间:Tn= t 单程相遇(2n-1) 第 m 次追及时间:Tm= t 单程追及(2m-1) 限定时间内的相遇次数:N 相遇次数= (Tn+ t 单程相遇)/2 t 单程相遇 限定时间内的追及次数:M 追及次数= (Tm+ t 单程追及)/2 t 单程追及 注:是
4、取整符号 之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注 意,不要把运动方向搞错了。 简单例题:甲、乙两车同时从 A 地出发,在相距 300 千米的 A、B 两地之间 不断往返行驶,已知甲车的速度是每小时 30 千米,乙车的速度是每小时 20 千 米,问(1)第二次迎面相遇后又经过多长时间甲、乙追及相遇?(2)相遇时距离中 点多少千米?(3)50 小时内,甲乙两车共迎面相遇多少次? 三、火车问题。特点无非是涉及到车长,相对容易。小题型分为: (1)火车 vs 点(静止的,如电线杆和运动的,如人)s 火车=(v 火车 v 人) t 经过 (2)火车 vs 线段(静止的,如桥和运
5、动的,如火车)s 火车+s 桥=v 火车t 经过和 s 火车 1+s 火车 2=(v 火车 1 v 火车 2)t 经过 合并(1)和(2)来理解即 s 和=v 相对t 经过把电线杆、人的水平长度想象 为 0 即可。火车问题足见基本公式的应用广度,只要略记公式,火车问题一般 不是问题。 (3)坐在火车里。本身所在火车的车长就形同虚设了,注意的是相对速度的 计算。电线杆、桥、隧道的速度为 0(弱智结论)。 四、流水行船问题。理解了相对速度,流水行船问题也就不难了。理解记 住 1 个公式(顺水船速=静水船速+水流速度)就可以顺势理解和推导出其他公式 (逆水船速=静水船速-水流速度,静水船速=(顺水船
6、速+逆水船速)2,水流速 度=(顺水船速-逆水船速)2),对于流水问题也就够了。技巧性结论如下: (1)相遇追及。水流速度对于相遇追及的时间没有影响,即对无论是同向还 是相向的两船的速度差不构成“威胁”,大胆使用为善。 (2)流水落物。漂流物速度=水流速度,t1= t2(t1:从落物到发现的时间段, t2:从发现到拾到的时间段)与船速、水速、顺行逆行无关。此结论所带来的时 间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。 例题:一条河上有甲、乙两个码头,甲码头在乙码头的上游 50 千米处。一 艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度 相同。客船出发时有一
7、物品从船上落入水中,10 分钟后此物品距客船 5 千米。 客船在行驶 20 千米后掉头追赶此物品,追上时恰好和货船相遇。求水流速度。 五、间隔发车问题。空间理解稍显困难,证明过程对快速解题没有帮助。 一旦掌握了 3 个基本公式,一般问题都可以迎刃而解。 (1)在班车里。即柳卡问题。不用基本公式解决,快速的解法是直接画时间 -距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。如果不画图, 单凭想象似乎对于像我这样的一般人儿来说不容易。 例题:A、B 是公共汽车的两个车站,从 A 站到 B 站是上坡路。每天上午 8 点到 11 点从 A、B 两站每隔 30 分同时相向发出一辆公共汽车。已知
8、从 A 站到 B 站单程需要 105 分钟,从 B 站到 A 站单程需要 80 分钟。问 8:30、9:00 从 A 站发车的司机分别能看到几辆从 B 站开来的汽车? (2)在班车外。联立 3 个基本公式好使。 汽车间距=(汽车速度+行人速度)相遇事件时间间隔-1 汽车间距=(汽车速度-行人速度)追及事件时间间隔-2 汽车间距=汽车速度汽车发车时间间隔-3 1、2 合并理解,即 汽车间距=相对速度时间间隔 分为 2 个小题型:1、一般间隔发车问题。用 3 个公式迅速作答;2、求到达 目的地后相遇和追及的公共汽车的辆数。标准方法是:画图-尽可能多的列 3 个 好使公式-结合 s 全程=vt-结合
9、植树问题数数。 例题:小峰在骑自行车去小宝家聚会的路上注意到,每隔 9 分钟就有一辆 公交车从后方超越小峰。小峰骑车到半路车坏了,于是只好坐出租车去小宝家。 这时小峰又发现出租车也是每隔 9 分钟超越一辆公交车,已知出租车的速度是 小峰骑车速度的 5 倍,如果这 3 种车辆在行驶过程中都保持匀速,那么公交车 站每隔多少分钟发一辆车? 六、平均速度问题。相对容易的题型。大公式要牢牢记住:总路程=平均速 度总时间。用 s=vt 写出相应的比要比直接写比例式好理解并且规范,形成 行程问题的统一解决方案。 七、环形问题。是一类有挑战性和难度的题型,分为“同一路径”、“不 同路径”、“真实相遇”、“能否
10、看到”等小题型。其中涉及到周期问题、几 何位置问题(审题不仔细容易漏掉多种位置可能)、不等式问题(针对“能否看到” 问题,即问甲能否在线段的拐角处看到乙)。仍旧属于就题论题范畴,不展开了。 八、钟表问题。是环形问题的特定引申。基本关系式:v 分针= 12v 时针 (1)总结记忆:时针每分钟走 1/12 格,0.5;分针每分钟走 1 格,6。时 针和分针“半”天共重合 11 次,成直线共 11 次,成直角共 22 次(都在什么位 置需要自己拿表画图总结)。 (2)基本解题思路:路程差思路。即 格或角(分针)=格或角(时针)+格或角(差) 格:x=x/12+(开始时落后时针的格+终止时超过时针的格
11、) 角:6x=x/2+(开始时落后时针的角度+终止时超过时针的角度) 可以解决大部分时针问题的题型,包括重合、成直角、成直线、成任意角 度、在哪两个格中间,和哪一个时刻形成多少角度。 例题:在 9 点 23 分时,时针和分针的夹角是多少度?从这一时刻开始,经 过多少分钟,时针和分针第一次垂直? (3)坏钟问题。所用到的解决方法已经不是行程问题了,变成比例问题了, 有相应的比例公式。这里不做讨论了,我也讨论不好,都是考公务员的题型, 有难度。 九、自动扶梯问题。仍然用基本关系式 s 扶梯级数=(v 人速度v 扶梯速度) t 上或下解决最漂亮。这里的路程单位全部是“级”,唯一要注意的是 t 上 或
12、下要表示成实际走的级数/人的速度。可以 PK 掉绝大部分自动扶梯问题。 例题:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上 下走动,女孩由下向上走,男孩由上向下走,结果女孩走了 40 级到达楼上,男 孩走了 80 级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的 2 倍,则当 该扶梯静止时,可看到的扶梯梯级有多少级? 十、十字路口问题。即在不同方向上的行程问题。没有特殊的解题技巧, 只要老老实实把图画对,再通过几何分析就可以解决。 十一、校车问题。就是这样一类题:队伍多,校车少,校车来回接送,队 伍不断步行和坐车,最终同时到达目的地(即到达目的地的最短时间,不要求证 明)分 4
13、 种小题型:根据校车速度(来回不同)、班级速度(不同班不同速)、班数 是否变化分类。 (1)车速不变-班速不变-班数 2 个(最常见) (2)车速不变-班速不变-班数多个 (3)车速不变-班速变-班数 2 个 (4)车速变-班速不变-班数 2 个 标准解法:画图-列 3 个式子:1、总时间=一个队伍坐车的时间+这个队伍 步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来 接它的时间。最后会得到几个路程段的比值,再根据所求代数即可。此类问题 可以得到几个公式,但实话说公式无法记忆,因为相对复杂,只能临考时抱佛 脚还管点儿用。孩子有兴趣推导一下倒可以,不要死记硬背。 简单例
14、题:甲班与乙班学生同时从学校出发去 15 千米外的公园游玩,甲、 乙两班的步行速度都是每小时 4 千米。学校有一辆汽车,它的速度是每小时 48 千米,这辆汽车恰好能坐一个班的学生。为了使两班学生在最短时间内到达公 园,那么甲班学生与乙班学生需要步行的距离是多少千米? 十二、保证往返类。简单例题:A、B 两人要到沙漠中探险,他们每天向沙 漠深处走 20 千米,已知每人最多可以携带一个人 24 天的食物和水。如果不准 将部分食物存放于途中,其中一个人最远可深入沙漠多少千米(要求两人返回出 发点)?这类问题其实属于智能应用题类。建议推导后记忆结论,以便考试快速 作答。每人可以带够 t 天的食物,最远可以走的时间 T (1)返回类。(保证一个人走的最远,所有人都要活着回来) 1、两人:如果中途不放食物:T=2/3t;如果中途放食物:T=3/4t。 2、多人:没搞明白,建议高手补充。 (2)穿沙漠类(保证一个人穿过沙漠不回来了,其他人都要活着回来)共有 n 人(包括穿沙漠者)即多人助 1 人穿沙漠类。 1、中途不放食物:T2n/(n+1)t。T 是穿沙漠需要的天数。 2、中途放食物:T=(1+1/3+1/5+1/7+1/(2n-1)t 还有几类不甚常见的杂题,没有典型性和代表性,在此不赘述。希望大家 完善以上的题型分类,因为奥数好玩。