1、八年级( 下) 数学期末综合练习卷 测试时间 60 分钟 测试分值 100 分 学生姓名 实际评分 一、选择题(每小题 3 分,共 30 分) 1、不等式 2x -30 的解集是( ) A.x B.x C.x D.x23 2、下列命题中,真命题是( ) A. 互补两角若相等,则此两角都是直角 B. 直线是平角 C. 不相交的两条直线叫做平行线 D. 和为 的两个角叫做邻补角180 3、已知:如图,ABCD,CE 平分ACD ,A110 0,则ECD 的度数等于 A.110 B.70 C.55 D.35 4、某学生用一架不等臂天平称药品第一次将左盘放入 50 克砝码,右盘放药品使天平平 衡第二次
2、将右盘放入 50 克砝码,左盘放药品使天平平衡则两次称得药品的质量和( ) A.等于 100 克 B.大于 100 克 C.小于 100 克 D.以上情况都有可能 5、化简: 的结果是( ) 32912m A. B. C. D.692m 6、在ABC 中,I 是内心(三角形内角平分线的交点),BIC 130,则A 的度数是( ) A.40 B.50 C.65 D.80 7、如图,ABC 中,DEBC,如果 AD=1,DB=2,那么 的值为( )DEBC A. B. C. D.32413121 (第 3 题图) (第 7 题图) (第 8 题图) 8、如图,在正方形网格上有五个三角形,其中与AB
3、C 相似(不包括ABC 本身)有( ) A1 个 B2 个 C3 个 D4 个 9、一组数据 13,14,15,16,17 的标准差是( ) A.0 B.10 C. D.2 10、把一盒苹果分给几个学生,若每人分 4 个,则剩下 3 个,若每人分 6 个,则最后一个 学生能得到的苹果不超过 2 个,则学生人数是( ) A.3 B.4 C.5 D.6 二、填空题(每小题 3 分,共 24 分) 11、分解因式:2x 2-12x+18= . 12、若 ab0,则 1,1-a,1-b 这三个数按由小到大的顺序用“”连接起来: . 13、计算 的结果是 .)1(a 14、在 R tABC 中,锐角 A
4、 的平分线与锐角 B 的邻补角的平分线相交于点 D,则 ADB_ 15、北京至石家庄的铁路长 392 千米,为适应经济发展,自 2001 年 10 月 21 日起,某客运 列车的行车速度每小时比原来增加 40 千米,使得石家庄至北京的行车时间短了 1 小时。如 果设该列车提速前的速度为每小时 x 千米,那么为求 x 所列出的方程为_。 16、如图,在ABC 中,点 D 在 AB 上,请再添加一个适当的条件,使ADC ACB,那么要添加的条件是 。 (只需填写满足要求的一个条件即可) 。 17、右表为甲、乙两人比赛投篮球的记录, 以命中率(投进球数与投球次数的比值)来 比较投球成绩的好坏,得知他
5、们的成绩一样 好,下面有四个 a,b 的关系式: a b5 a b18 a:b2:1 a:182:3 其中正确的是 (只填序号) (第 16 题图) (第 18 题图) 18、某综合性大学拟建校园局域网络,将大学本部 A 和所属专业学院 B、C、 D、E 、F 、G 之间用网线连接起来经过测算,网线费用如图如示(单位:万元) , 每个数字表示对应网线(线段)的费用实际建同时,部分网线可以省略不建,但本部及 所属专业学院之间可以传递信息,那么建网所需的最少网线费用为 万元。 三、解答题(每小题 6 分,共 12 分) 19、解不等式组 ,并把解集在数轴上表示出来。 2501x 20、先化简,再求
6、值: ,其中 x 2x2 四、(每小题 8 分,共 16 分) 21、某中学部分同学参加全国初中数学竞赛,取得了优异的成绩指导老师统计了所有参 赛同学的成绩(成绩都是整数,试题满分 120 分) ,并且绘制了“频数分布直方图” (如图) 请回答: (1)中学参加本次数学竞赛的有多少名同学? (2)如果成绩在 90 分以上(含 90 分)的同学获奖,那么该中学参赛同学的获奖率是多少? (3)这次竟赛成绩的中位数落在哪个分数段内? (4)图中还提供了其它信息,例如该中学没有获得满分的同学等等请再写出两条信息 22、求证:三角形的内角和等于 180(要求画出图形,写出已知、求证和证明过程). 五、(每小题 8 分,共 16 分) 23、如图,点 E 是四边形 ABCD 的对角线 BD 上一点,且BAC= BDC=DAE。 求证:ABEACD. 24、某工程队要招聘甲、乙两种工种的工人 150 人,甲、乙两种工种的工人的月工资分别 为 600 元和 1000 元,现要求乙种工种的人数不少于甲种工种人数的 2 倍,问甲、乙同种工 种各招聘多少人时,可使得每月所付的工资最少?