1、习 题 二(A)三、解答题 1一颗骰子抛两次,以X表示两次中所得的最小点数 (1) 试求X的分布律; (2) 写出X的分布函数 解: (1)X123456pi分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有(这里指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为多算了一次)或种,故,其他结果类似可得. (2) 2某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X表示某抽奖者
2、在一次抽取中净赢钱数,求X的分布律解:X-199pi注意,这里X指的是赢钱数,X取0-1或100-1,显然. 3设随机变量X的分布律为为常数,试求常数a 解:因为,所以. 4设随机变量X的分布律为X-123pi1/41/21/4 (1) 求X的分布函数; (2) 求, 解: (1) , (2) 、 , . 5设随机变量的分布律为求: (1) PX = 偶数 (2) PX 5 (3) PX = 3的倍数 解:(1) , (2) , (3) . 6. 某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,而与时间间隔的起点无关(时间以小时计) (1) 求某一天中午12时
3、至下午3时没有收到紧急呼救的概率 (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率 解: (1) . (2) . 7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率 解:设射击的次数为X,由题意知,由于上面二项分布的概率计算比较麻烦,而且X近似服从泊松分布P(l)(其中l=4000.02),所以PX2,查表泊松分布函数表得:PX2 8. 设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号现进行5次独立试验,试求指示灯发出信号的概率 解:设X为事件A在5次独立重复实验中出现的次数,则指示灯发出信号的概率 . 9. 设
4、顾客在某银行窗口等待服务的时间X(以分钟计)服从参数为5指数分布某顾客在窗口等待服务,若超过10分钟,他就离开他一个月要到银行5次,以Y表示他未等到服务而离开窗口的次数写出Y的分布律,并求PY 1 解:因为X服从参数为5的指数分布,则,,则. 10设随机变量的概率密度为,试求: (1) 系数a; (2) X落在区间内的概率 解:(1) 由归一性知:,所以. (2) . 11设连续随机变量的分布函数为试求: (1) 系数A;(2) X落在区间(0.3,0.7)内的概率;(3) X的概率密度 解 (1)由F(x)在x=1的连续性可得,即A=1.(2). (3)X的概率密度. 12设随机变量X服从(
5、0,5)上的均匀分布,求x的方程有实根的概率 解:因为X服从(0,5)上的均匀分布,所以 若方程有实根,则,即,得或,所以有实根的概率为 13设XN(3,4) (1) 求 (2) 确定c使得 (3) 设d满足,问d至多为多少? 解: (1) 因为 所以 . (2) ,则, 经查表得,即,得;由概率密度关于x=3对称也容易看出。 (3) ,则,即,经查表知,故,即. 14设随机变量X服从正态分布,若,试求 解: 所以 ,;由对称性更容易解出. 15设随机变量X服从正态分布,试问:随着s的增大,概率P|X m | 1时,所以;(2), 当时,为不可能事件,则, 当时,则, 当时,则,根据得 ;(3),当时,当时,所以 ; 7设随机变量X服从参数为1/2的指数分布,试证和都服从区间(0,1)上的均匀分布 (1) 证明:由题意知。,当时,即,当时,当时,故有,可以看出服从区间(0,1)均匀分布; (2) 当时, 当时, 当时, 由以上结果,易知,可以看出服从区间(0,1)均匀分布.15