1、自动控制理论课程习题集自动控制理论课程习题集一、单选题1. 下列不属于自动控制基本方式的是( B )。A开环控制B随动控制C复合控制D闭环控制2. 自动控制系统的( A )是系统工作的必要条件。A稳定性B动态特性C稳态特性D瞬态特性3. 在( D )的情况下应尽量采用开环控制系统。A. 系统的扰动量影响不大B. 系统的扰动量大且无法预计C. 闭环系统不稳定D. 系统的扰动量可以预计并能进行补偿4. 系统的其传递函数( B )。A. 与输入信号有关B. 只取决于系统结构和元件的参数C. 闭环系统不稳定D. 系统的扰动量可以预计并能进行补偿5. 建立在传递函数概念基础上的是( C )。A. 经典理
2、论B. 控制理论 C. 经典控制理论D. 现代控制理论6. 构成振荡环节的必要条件是当( C )时。A. =1B. =0C. 01D. 0 17. 当( B )时,输出C(t)等幅自由振荡,称为无阻尼振荡。A. =1B. =0C. 00.528(2) 将K=0.528和s=j代入特征方程,由实部和虚部得到两个方程:- j3-3*0.5282+j2.528+4=0,3*0.5282-4=0由实部解得=1.5937. 已知系统闭环特征方程式为2s4+s3+3s2+5s+10=0,试判断系统的稳定性。列劳斯表如下:s42310s315s2-710s145/70s010表中数值部分第一列符号不同,系统
3、不稳定。38. 系统如图所示,求其阻尼比、上升时间、调节时间。R(s)-C(s)单位负反馈下,设则闭环传递函数为对于本题即有wn2=25 ,2zwn=5解得wn=5,=0.5代入公式,得其中=cos-139. 已知系统的闭环传递函数为求系统稳定时K的取值范围。特征多项式为40. 已知单位反馈系统的开环传递函数为试确定系统稳定时K的取值范围。闭环传递函数的分母为特征多项式:D(s)=s(0.1s+1)(0.2s+1)+K即50D(s)=s3+15s2+50s+50K列劳斯表如下:150050K50(15-k)/15 15050K由于数值部分第一列符号相同时系统才稳定,得K范围为 0K0,则系统不
4、稳定。(a)Z=P-2R=0-0=0 , 系统稳定;(b)Z=P-2R=0-0=0 , 系统稳定;(c)Z=P-2R=0-2(-1)=2 , 系统不稳定;(d)Z=P-2R=0-0=0 , 系统稳定。43. 将系统的传递函数为,试(1) 绘制其渐近对数幅频特性曲线;(2) 求截止频率c。 (1) 绘出开环对数幅频特性渐近线如下图所示。L(dB)-201c20100-40(2) 由图中10倍频程下降了20dB,可直接看出:c=1044. 设最小相位系统的开环对数幅频曲线如图所示,要求:(1) 写出系统的开环传递函数;(2) 计算相角裕度。0-20200.140-20dB/decdBL(w)w10
5、-40(1) 由图得最左端直线(或延长线)与零分贝线的交点频率,数值上等于K1/,即10= K1/一个积分环节,v=1则K=10(2) 因c位于=0.1和=10的中点,有g180-90-arctg(10c)90-arctg(10) =5.7145. 单位反馈系统原有的开环传递函数G0(s)和串联校正装置Gc(s)对数幅频渐近曲线如图,试写出校正后系统的开环传递函数表达式。10L(dB)-20-401020-200.1由图得传递函数为:校正后系统的开环传递函数为:46. 分析下面非线性系统是否存在自振?若存在,求振荡频率和振幅。已知非线性环节的描述函数为:1-1-由绘幅相曲线和负倒描述函数曲线如
6、下:-1/N(A)G(j)由图知存在自振。在自振点,得因此,系统存在频率为,振幅为2.122的自振荡。47. 设图示系统采样周期为,r(t)=1(t)。试求该采样系统的输出表示式。 R(s)C(s)48. 将下图所示非线性系统简化成环节串联的典型结构图形式,并写出线性部分的传递函数。49. 各非线性系统的G(j)曲线和-1/N(X)曲线如图(a)、(b)、(c)、(d)所示,试判断各闭环系统是否稳定及是否有自振。-1/N(X)jG(j)0(a)vj0(b)v-1/N(X)G(jw)j0(c)vj0(d)vG(jw)-1/N(X)G(j)-1/N(X)50. 试判断图中各闭环系统的稳定性。(未注
7、明者,p=0)根据奈氏判据(Z=P-2R;Z=0时稳定)可得:(a) 稳定;(b) 不稳定;(c) 稳定;(d) 稳定;(e) 稳定三、作图题51. 已知单位负反馈系统开环传递函数,(1)绘制闭环根轨迹;(2)确定使闭环系统阶跃响应无超调的K值范围。 (1)由开环传递函数绘根轨迹如下图。s0 jwd1d2-1-2分离点的坐标 d 可由方程:解得 d1=-0.586, d2=-3.414(2) 将s=d1、s= d2 分别代入根轨迹方程G(s)= 1求K值:由,得K=11.656;由,得K=0.34闭环根位于实轴上时阶跃响应无超调, 综合得K取值范围:K11.656, K0.528(2) 将K=
8、0.528和s=j代入特征方程,由实部和虚部得到两个方程:- j3-3*0.5282+j2.528+4=0,3*0.5282-4=0由实部解得=1.5937. 列劳斯表如下:s42310s315s2-710s145/70s010表中数值部分第一列符号不同,系统不稳定。38. 单位负反馈下,设则闭环传递函数为对于本题即有wn2=25 ,2zwn=5解得wn=5,=0.5代入公式,得其中=cos-139. 特征多项式为40. 闭环传递函数的分母为特征多项式:D(s)=s(0.1s+1)(0.2s+1)+K即50D(s)=s3+15s2+50s+50K列劳斯表如下:150050K50(15-k)/1
9、5 15050K由于数值部分第一列符号相同时系统才稳定,得K范围为 0K0,则系统不稳定。(a)Z=P-2R=0-0=0 , 系统稳定;(b)Z=P-2R=0-0=0 , 系统稳定;(c)Z=P-2R=0-2(-1)=2 , 系统不稳定;(d)Z=P-2R=0-0=0 , 系统稳定。43. (1) 绘出开环对数幅频特性渐近线如下图所示。L(dB)-201c20100-40(2) 由图中10倍频程下降了20dB,可直接看出:c=1044. (1) 由图得最左端直线(或延长线)与零分贝线的交点频率,数值上等于K1/,即10= K1/一个积分环节,v=1则K=10(2) 因c位于=0.1和=10的中
10、点,有g180-90-arctg(10c)90-arctg(10) =5.7145. 由图得传递函数为:校正后系统的开环传递函数为:46. 由绘幅相曲线和负倒描述函数曲线如下:-1/N(A)G(j)由图知存在自振。在自振点,得因此,系统存在频率为,振幅为2.122的自振荡。47. 输入为阶跃信号,其Z变换为脉冲传递函数和输出表示式为48. 将系统结构图等效变换为:RG(s)_H1(s)N(A)C其中:49. 图(a):不稳定,且为不稳定的周期运动点;图(b):不稳定,但有稳定的周期运动点;图(c):不稳定系统;图(d):不稳定,且左交点是稳定的自振点,右交点是不稳定的周期运动点。50. 根据奈
11、氏判据(Z=P-2R;Z=0时稳定)可得:(a) 稳定;(b) 不稳定;(c) 稳定;(d) 稳定;(e) 稳定三、作图题51. (1)由开环传递函数绘根轨迹如下图。s0 jwd1d2-1-2分离点的坐标 d 可由方程:解得 d1=-0.586, d2=-3.414(2) 将s=d1、s= d2 分别代入根轨迹方程G(s)= 1求K值:由,得K=11.656;由,得K=0.34闭环根位于实轴上时阶跃响应无超调, 综合得K取值范围:K11.656, K0.3452. (1)由开环传递函数绘根轨迹如下图。(2)分离点的坐标 d 可由方程:解得 d1=-0. 89(3)渐近线方程(通过坐标原点)(4)由于根轨迹不会进入虚轴右侧区域,故闭环系统稳定性。53. (1)由开环传递函数绘根轨迹如下图。jws0-1-2,K=6K=6(2)已知分离点的坐标d = - 0.42(3)渐近线方程(4) 系统临界稳定时,根轨迹与虚轴相交开环增益为 K=K/2 ,故K的稳定域为 0K3 .54. (1)绘制闭环根轨迹如下图所示。jws0-2-3-5(2)分离点的坐标 d 可由方程解得 d=-0. 89(3)渐近线方程(4)由于根轨迹不会进入虚轴右侧区域,故闭环系统稳定。55. (1)绘制闭环根轨迹如下图所示。其中(2)由 第 页 共 23 页