.平面向量中的最值问题浅析耿素兰 山西平定二中(045200)平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。一、利用函数思想方法求解例1、给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是_.图 1 1分析:寻求刻画点变化的变量,建立目标与此变量的函数关系是解决最值问题的常用途径。解:设,以点为原点,为轴建立直角坐标系,则,。即。因此,当时,取最大值2。例2、已知点Q为射线OP上的一个动点,当取最小值时,求分析:因为点Q在射线OP上,向量与同向,故可以得到关于坐标的一个关系式,再根据取最小值求解:设,则当时,取最小值-8,此时二、利用向量的数量积求最值例3、三边长为,以A为圆心,r为半径作圆,PQ为直径,试判断P、Q在什么位置时,有最大值。分析:用已知向量表示未知向量,然后用数量积的性质求解。解:图 2 1当且仅当与同向时,有最大值。