.数列的通项公式1.通项公式 如果数列的第n项与项数n之间的函数关系可以用一个公式来表达,叫做数列的通项公式。2.数列的递推公式 (1)如果已知数列的第一项,且任一项与它的前一项之间的关系可以用一个公式来表示。 (2)递推公式是数列所特有的表示方法,它包含两部分,一是递推关系,二是初始条件,二者缺一不可3.数列的前n项和与数列通项公式的关系 数列的前n项之和,叫做数列的前n项和,用表示,即 与通项的关系是4.求数列通项公式的常用方法有:(前6种常用,特别是2,5,6)1)、公式法,用等差数列或等比数列的定义求通项2)前n项和与的关系法, 求解. (注意:求完后一定要考虑合并通项)3)、累(叠)加法:形如4). 累(叠)乘法:形如 5).待定系数法 :形如a=p a+q(p1,pq0),(设a+k=p(a+k)构造新的等比数列)6) 倒数法 :形如(两边取倒,构造新数列,然后用待定系数法或是等差数列)7). 对数变换法 :形如,(然后用待定系数法或是等差数列)8).除幂构造法: 形如 (然