.一、 内点法1. 基本原理内点法的特点是将构造的新的无约束目标函数惩罚函数定义在可行域内,并在可行域内求惩罚函数的极值点,即求解无约束问题时的探索点总是在可行域内部,这样,在求解内点惩罚函数的序列无约束优化问题的过程中,所求得的系列无约束优化问题的解总是可行解,从而在可行域内部逐步逼近原约束优化问题的最优解。内点法是求解不等式约束最优化问题的一种十分有效方法,但不能处理等式约束。因为构造的内点惩罚函数是定义在可行域内的函数,而等式约束优化问题不存在可行域空间,因此,内点法不能用来求解等式约束优化问题。对于目标函数为min s.t. (u=1,2,3,m)的最优化问题,利用内点法进行求解时,构造惩罚函数的一般表达式为或者 而对于受约束于的最优化问题,其惩罚函数的一般形式为或式中,-惩罚因子,是递减的正数序列,即 通常取。上述惩罚函数表达式的右边第二项,称为惩罚项,有时还称为障碍项。说明:当迭代点在可行域内部时,有(=1,2,3,4,m),而,则惩罚项恒