.余弦定理及其应用【教学目标】【知识与技能目标】(1)了解并掌握余弦定理及其推导过程(2)会利用余弦定理来求解简单的斜三角形中有关边、角方面的问题(3)能利用计算器进行简单的计算(反三角)【过程与能力目标】(1)用向量的方法证明余弦定理,不仅可以体现向量的工具性,更能加深对向量知识应用的认识(2)通过引导、启发、诱导学生发现并且顺利推导出余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力【情感与态度目标】通过三角函数、余弦定理、向量数量积等知识间的联系,来体现事物之间的普遍联系与辩证统一【教学重点】余弦定理的证明及应用【教学难点】(1)用向量知识证明余弦定理时的思路分析与探索(2)余弦定理在解三角形时的应用思路【教学过程】一、引入问:在RtABC中,若C=,三边之间满足什么关系?答:问:若C,三边之间是否还满足上述关系?答:应该不会有了!问:何以见得?答:假如不变,将A、B往里压缩,则C,且;同理,假如不变,将A、B往外拉伸,则C,且