偏最小二乘法1.1 基本原理偏最小二乘法(PLS)是基于因子分析的多变量校正方法,其数学基础为主成分分析。但它相对于主成分回归(PCR)更进了一步,两者的区别在于PLS法将浓度矩阵Y和相应的量测响应矩阵X同时进行主成分分解:X=TP+EY=UQ+F 式中T和U分别为X和Y的得分矩阵,而P和Q分别为X和Y的载荷矩阵,E和F分别为运用偏最小二乘法去拟合矩阵X和Y时所引进的误差。偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。为了实现这一点,数学中是以矩阵Y的列去计算矩阵X的因子。同时,矩阵Y的因子则由矩阵X的列去预测。分解得到的T和U矩阵分别是除去了大部分测量误差的响应和浓度的信息。偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T和特征浓度矩阵U进行回归:U=TB得到回归系数矩阵,又称关联矩阵B:B=(TTT-1)TTU因此,偏最小二乘法的校正步骤包括对矩阵Y和矩阵X的主成分分解以及对关联矩阵B的计算。1.2主成分分析主成分分析的中心目的是将数据降维,以排除众多化学信息共