例1:如图,ABC是等腰直角三角形,BAC=90,BD平分ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分ABC的条件,可以和等腰三角形的三线合一定理结合起来。解答过程:证明:延长BA,CE交于点F,在BEF和BEC中,1=2,BE=BE,BEF=BEC=90,BEFBEC,EF=EC,从而CF=2CE。又1+F=3+F=90,故1=3。在ABD和ACF中,1=3,AB=AC,BAD=CAF=90,ABDACF,BD=CF,BD=2CE。解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。(2)若遇到三
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。