“胡不归模型”中考最值专题(一)【教学重难点】1“胡不归”之情景再现,模型识别2本质:“两定一动”型系数不为1的最值问题处理3三步处理:作角;作垂线;计算【模块一 模型识别】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径AB(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?”这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”法国著名数学家费马(Fermat,16011665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅成的我们