“胡不归”问题数学模型话说,从前有一小伙子外出务工,某天不幸得知老父亲病危的消息,便立即赶路回家小伙子略懂数学常识,考虑到“两点之间线段最短”的知识,就走布满沙石的路直线路径,而忽视了走折线虽然路程多但速度快的实际情况,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭。邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归胡不归”这个问题引起了人们的思索,小伙子能否节省路上时间提前到家?如果可以,他应该选择一条怎样的路线呢?这就是流传千百年的“胡不归问题。如图,A是出发点,B是目的地,直线AC是一条驿道,而驿道靠目的地一侧全是砂土,为了选择合适的路线,根据不同路面速度不同(驿道速度为米/秒,砂土速度为米/秒),小伙子需要在AC上选取一点D,再折往至B。看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题。将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,如图,过定点A在驿道下方作射线AE,夹角为,且,作DGA