第二章 有理数,2.1正数和负数,正数和负数产生的背景: 为了简明地表示实际生活中具有相反意义的量。,有理数的定义和分类,整数,分数,正整数,正有理数,零,负整数,正分数,负分数,负有理数,零,有理数,有理数,整数和分数统称有理数,把下列各数填入相应的集合。,1,3.14,98%,-16,0,-0.2,-16,3.14,98%,数轴与有理数: 任何有理数都可以用数轴上点表示,利用数轴可以更方便, 更直观的研究有理数的问题。这种数学思想叫数形结合思想,2.2数轴,定义: 规定了原点、正方向、单位长度的直线。,什么是数轴? 为什么要学数轴? 怎么用数轴?,利用数轴表示有理数要注意两点: 1、根据数的符号确定方向,通常负数在原点左边,正数在原点右边。 2、根据数的绝对值确定离原点的位置。,性质: 1、在数轴上位于原点两侧,并且到原点的距离相等。 2、和为零,2.3相反数,定义: 只有符号不同的两个数称互为相反数. 零的相反数是零.,相反数的表示: 我们可以用在一个数前面加“-”来表示这个数 的相反数。比如a的相反数为-a。还可以利用 它来化简含多重符号的式子。,2.3相反数,思考:a与-a哪